skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on December 21, 2018

Title: Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression. The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.
Authors:
 [1] ; ORCiD logo [2]
  1. Princeton Univ., NJ (United States)
  2. Princeton Univ., NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Grant/Contract Number:
PHY-1506122; NA0001836
Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
OSTI Identifier:
1432486
Alternate Identifier(s):
OSTI ID: 1414499