skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal conductivity model for nanofiber networks

Abstract

Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [3]
  1. Univ. of Colorado, Boulder, CO (United States)
  2. Univ. of Colorado, Boulder, CO (United States); China Univ. of Mining and Technology, Xuzhou (China)
  3. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1432440
Alternate Identifier(s):
OSTI ID: 1422261
Report Number(s):
NREL/JA-5500-71269
Journal ID: ISSN 0021-8979; TRN: US1802659
Grant/Contract Number:  
AC36-08GO28308; AR0000743
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 123; Journal Issue: 8; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; thermal transport; nanofibers; thermal insulation; thermal conductivity

Citation Formats

Zhao, Xinpeng, Huang, Congliang, Liu, Qingkun, Smalyukh, Ivan I., and Yang, Ronggui. Thermal conductivity model for nanofiber networks. United States: N. p., 2018. Web. doi:10.1063/1.5008582.
Zhao, Xinpeng, Huang, Congliang, Liu, Qingkun, Smalyukh, Ivan I., & Yang, Ronggui. Thermal conductivity model for nanofiber networks. United States. doi:10.1063/1.5008582.
Zhao, Xinpeng, Huang, Congliang, Liu, Qingkun, Smalyukh, Ivan I., and Yang, Ronggui. Thu . "Thermal conductivity model for nanofiber networks". United States. doi:10.1063/1.5008582. https://www.osti.gov/servlets/purl/1432440.
@article{osti_1432440,
title = {Thermal conductivity model for nanofiber networks},
author = {Zhao, Xinpeng and Huang, Congliang and Liu, Qingkun and Smalyukh, Ivan I. and Yang, Ronggui},
abstractNote = {Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.},
doi = {10.1063/1.5008582},
journal = {Journal of Applied Physics},
number = 8,
volume = 123,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic of a nanofiber network. (a) A 3D nanofiber network under a temperature difference with high temperature π‘‡β„Ž on the top and low temperature 𝑇𝑐 at the bottom. (b) Contacts in the nanofiber network. The heat transfer through the contact between nanofiber 𝛼 and nanofiber 𝛽 is describedmore » by Eq. (8). (c) The orientation of a single nanofiber in the 3D space is described by polar and azimuthal angles (πœƒ, πœ™).« less

Save / Share:

Works referenced in this record:

Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes
journal, July 2012

  • Volkov, Alexey N.; Zhigilei, Leonid V.
  • Applied Physics Letters, Vol. 101, Issue 4
  • DOI: 10.1063/1.4737903

Thermal and Electrical Transport in Ultralow Density Single-Walled Carbon Nanotube Networks
journal, April 2013

  • Zhang, Ke Jia; Yadav, Abhishek; Kim, Kyu Hun
  • Advanced Materials, Vol. 25, Issue 21
  • DOI: 10.1002/adma.201300059

Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials
journal, May 2010


Thermal Boundary Conductance between Multi-Walled Carbon Nanotubes
journal, January 2012

  • Yamada, Yutaka; Nishiyama, Takashi; Yasuhara, Takahiro
  • Journal of Thermal Science and Technology, Vol. 7, Issue 1
  • DOI: 10.1299/jtst.7.190

A three-dimensional carbon nano-network for high performance lithium ion batteries
journal, January 2015


Upscaling the diffusion equations in particulate media made of highly conductive particles. I. Theoretical aspects
journal, January 2008


The thermal conductivity of textiles
journal, January 1946


Modelling microstructure effects on the conduction in fibrous materials with fibre–fibre interface barriers
journal, March 2008

  • Vassal, J-P; OrgΓ©as, L.; Favier, D.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 16, Issue 3
  • DOI: 10.1088/0965-0393/16/3/035007

In-plane conduction of polymer composite plates reinforced with architectured networks of Copper fibres
journal, November 2011

  • OrgΓ©as, Laurent; Dumont, Pierre J. J.; Vassal, Jean-Pierre
  • Journal of Materials Science, Vol. 47, Issue 6
  • DOI: 10.1007/s10853-011-6126-z

Mechanical and electrical properties of a MWNT/epoxy composite
journal, November 2002


Upscaling the diffusion equations in particulate media made of highly conductive particles. II. Application to fibrous materials
journal, January 2008


Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling
journal, September 2006


The effect of mesoscopic shape on thermal properties of multi-walled carbon nanotube mats
journal, September 2011


Thermal conductivity of misaligned short-fiber-reinforced polymer composites
journal, February 2003

  • Fu, Shao-Yun; Mai, Yiu-Wing
  • Journal of Applied Polymer Science, Vol. 88, Issue 6
  • DOI: 10.1002/app.11864

Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials
journal, April 2014

  • Wang, Shouling; Cheng, Yin; Wang, Ranran
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9
  • DOI: 10.1021/am500009p

Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
journal, August 2006

  • Kumar, Satish; Alam, Muhammad A.; Murthy, Jayathi Y.
  • Journal of Heat Transfer, Vol. 129, Issue 4
  • DOI: 10.1115/1.2709969

Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs
journal, September 2016

  • Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.
  • Science Advances, Vol. 2, Issue 9
  • DOI: 10.1126/sciadv.1601240

Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study
journal, December 2005


Thermal conductivity of chirality-sorted carbon nanotube networks
journal, March 2016

  • Lian, Feifei; Llinas, Juan P.; Li, Zuanyi
  • Applied Physics Letters, Vol. 108, Issue 10
  • DOI: 10.1063/1.4942968

Effective thermal conductivity of particulate composites with interfacial thermal resistance
journal, May 1997

  • Nan, Ce-Wen; Birringer, R.; Clarke, David R.
  • Journal of Applied Physics, Vol. 81, Issue 10
  • DOI: 10.1063/1.365209

A review and analysis of electrical percolation in carbon nanotube polymer composites
journal, August 2009


Anomalous thermal conductivity enhancement in nanotube suspensions
journal, October 2001

  • Choi, S. U. S.; Zhang, Z. G.; Yu, W.
  • Applied Physics Letters, Vol. 79, Issue 14
  • DOI: 10.1063/1.1408272

In-Plane Anisotropic Thermally Conductive Nanopapers by Drawing Bacterial Cellulose Hydrogels
journal, March 2017


Carbon nanotube composites for thermal management
journal, April 2002

  • Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.
  • Applied Physics Letters, Vol. 80, Issue 15
  • DOI: 10.1063/1.1469696

Radiant Heat Transfer in Fibrous Thermal Insulation
journal, November 1967

  • Hager, Nathaniel E.; Steere, Robin C.
  • Journal of Applied Physics, Vol. 38, Issue 12
  • DOI: 10.1063/1.1709200

Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films
journal, October 2014

  • Diaz, Jairo A.; Ye, Zhijiang; Wu, Xiawa
  • Biomacromolecules, Vol. 15, Issue 11
  • DOI: 10.1021/bm501131a

A Modified Analysis of the Microstructural Characteristics of General Fiber Assemblies
journal, June 1993


High-Density Carbon Nanotube Buckypapers with Superior Transport and Mechanical Properties
journal, January 2012

  • Zhang, Ling; Zhang, Guang; Liu, Changhong
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl3023274

Investigation of the effect of the gas permeation induced by pressure gradient on transient heat transfer in silica aerogel
journal, April 2016


Inter-tube thermal conductance in carbon nanotubes arrays and bundles: Effects of contact area and pressure
journal, June 2012

  • Evans, William J.; Shen, Meng; Keblinski, Pawel
  • Applied Physics Letters, Vol. 100, Issue 26
  • DOI: 10.1063/1.4732100

Upper bound to the thermal conductivity of carbon nanotube pellets
journal, April 2009

  • Chalopin, Yann; Volz, Sebastian; Mingo, Natalio
  • Journal of Applied Physics, Vol. 105, Issue 8
  • DOI: 10.1063/1.3088924

A review of fabrication and applications of carbon nanotube film-based flexible electronics
journal, January 2013

  • Park, Steve; Vosguerichian, Michael; Bao, Zhenan
  • Nanoscale, Vol. 5, Issue 5
  • DOI: 10.1039/c3nr33560g

Transport in Stochastic Fibrous Networks
journal, July 2000

  • Cheng, X.; Sastry, A. M.; Layton, B. E.
  • Journal of Engineering Materials and Technology, Vol. 123, Issue 1
  • DOI: 10.1115/1.1322357

Thermal conduction phenomena in carbon nanotubes and related nanostructured materials
journal, August 2013

  • Marconnet, Amy M.; Panzer, Matthew A.; Goodson, Kenneth E.
  • Reviews of Modern Physics, Vol. 85, Issue 3
  • DOI: 10.1103/RevModPhys.85.1295

Percolating Conduction in Finite Nanotube Networks
journal, August 2005


Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites
journal, December 2010


Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites
journal, October 2005

  • Bryning, M. B.; Milkie, D. E.; Islam, M. F.
  • Applied Physics Letters, Vol. 87, Issue 16
  • DOI: 10.1063/1.2103398

Thermal conductivity prediction of a Cu circular nanowire
journal, April 2014

  • Huang, Congliang; Feng, Yanhui; Zhang, Xinxin
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 58
  • DOI: 10.1016/j.physe.2013.12.002

Strongly anisotropic thermal and electrical conductivities of a self-assembled silver nanowire network
journal, January 2016

  • Cheng, Zhe; Han, Meng; Yuan, Pengyu
  • RSC Advances, Vol. 6, Issue 93
  • DOI: 10.1039/C6RA20331K

A multi-level fractal model for the effective thermal conductivity of silica aerogel
journal, December 2015


Turning Carbon Nanotubes from Exceptional Heat Conductors into Insulators
journal, March 2009


Thermal resistance of metal nanowire junctions in the ballistic regime
journal, March 2011


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.