skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Behavior of the maximum likelihood in quantum state tomography

Abstract

Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.

Authors:
ORCiD logo [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1432340
Report Number(s):
SAND2018-0673J
Journal ID: ISSN 1367-2630; 660116; TRN: US1802658
Grant/Contract Number:  
NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
New Journal of Physics
Additional Journal Information:
Journal Volume: 20; Journal Issue: 2; Journal ID: ISSN 1367-2630
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Scholten, Travis L., and Blume-Kohout, Robin. Behavior of the maximum likelihood in quantum state tomography. United States: N. p., 2018. Web. https://doi.org/10.1088/1367-2630/aaa7e2.
Scholten, Travis L., & Blume-Kohout, Robin. Behavior of the maximum likelihood in quantum state tomography. United States. https://doi.org/10.1088/1367-2630/aaa7e2
Scholten, Travis L., and Blume-Kohout, Robin. Thu . "Behavior of the maximum likelihood in quantum state tomography". United States. https://doi.org/10.1088/1367-2630/aaa7e2. https://www.osti.gov/servlets/purl/1432340.
@article{osti_1432340,
title = {Behavior of the maximum likelihood in quantum state tomography},
author = {Scholten, Travis L. and Blume-Kohout, Robin},
abstractNote = {Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.},
doi = {10.1088/1367-2630/aaa7e2},
journal = {New Journal of Physics},
number = 2,
volume = 20,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
journal, January 2006

  • Candes, Emmanuel J.; Tao, Terence
  • IEEE Transactions on Information Theory, Vol. 52, Issue 12, p. 5406-5425
  • DOI: 10.1109/TIT.2006.885507

Estimating the Dimension of a Model
journal, March 1978


Bayes Factors
journal, June 1995


On the Problem of the Most Efficient Tests of Statistical Hypotheses
journal, January 1933

  • Neyman, J.; Pearson, E. S.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 231, Issue 694-706
  • DOI: 10.1098/rsta.1933.0009

Information criteria for efficient quantum state estimation
journal, June 2011


Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits
journal, September 2009


MPI for Python
journal, September 2005

  • Dalcín, Lisandro; Paz, Rodrigo; Storti, Mario
  • Journal of Parallel and Distributed Computing, Vol. 65, Issue 9
  • DOI: 10.1016/j.jpdc.2005.03.010

Continuous-variable optical quantum-state tomography
journal, March 2009


Fidelity and Leakage of Josephson Qubits
journal, December 1999


When quantum tomography goes wrong: drift of quantum sources and other errors
journal, February 2013


Measurement of the quantum states of squeezed light
journal, May 1997

  • Breitenbach, G.; Schiller, S.; Mlynek, J.
  • Nature, Vol. 387, Issue 6632
  • DOI: 10.1038/387471a0

Certifying Systematic Errors in Quantum Experiments
journal, April 2013


Measurement of qubits
journal, October 2001


Rank-based model selection for multiple ions quantum tomography
journal, October 2012


Living on the edge: phase transitions in convex programs with random data
journal, June 2014

  • Amelunxen, D.; Lotz, M.; McCoy, M. B.
  • Information and Inference, Vol. 3, Issue 3
  • DOI: 10.1093/imaiai/iau005

From Steiner Formulas for Cones to Concentration of Intrinsic Volumes
journal, April 2014


Random Matrices: Sharp Concentration of Eigenvalues
journal, July 2013


Multimodel Inference: Understanding AIC and BIC in Model Selection
journal, November 2004

  • Burnham, Kenneth P.; Anderson, David R.
  • Sociological Methods & Research, Vol. 33, Issue 2
  • DOI: 10.1177/0049124104268644

Quantum state estimation with informationally overcomplete measurements
journal, July 2014


SymPy: symbolic computing in Python
journal, January 2017

  • Meurer, Aaron; Smith, Christopher P.; Paprocki, Mateusz
  • PeerJ Computer Science, Vol. 3
  • DOI: 10.7717/peerj-cs.103

Measuring the quantum state of light
journal, January 1995


Experimental procedures for entanglement verification
journal, May 2007


Quantum State Reconstruction of the Single-Photon Fock State
journal, July 2001


Quantum tomography protocols with positivity are compressed sensing protocols
journal, December 2015

  • Kalev, Amir; Kosut, Robert L.; Deutsch, Ivan H.
  • npj Quantum Information, Vol. 1, Issue 1
  • DOI: 10.1038/npjqi.2015.18

The pauli problem, state reconstruction and quantum-real numbers
journal, February 2006


Errors in quantum tomography: diagnosing systematic versus statistical errors
journal, March 2013


Bootstrap Methods: Another Look at the Jackknife
journal, January 1979


On the Distribution of the Roots of Certain Symmetric Matrices
journal, March 1958

  • Wigner, Eugene P.
  • The Annals of Mathematics, Vol. 67, Issue 2
  • DOI: 10.2307/1970008

A new look at the statistical model identification
journal, December 1974


Error models in quantum computation: An application of model selection
journal, September 2013


Strictly-complete measurements for bounded-rank quantum-state tomography
journal, May 2016


Measurement of the Entanglement of Two Superconducting Qubits via State Tomography
journal, September 2006


A tomographic approach to Wigner's function
journal, April 1987

  • Bertrand, J.; Bertrand, P.
  • Foundations of Physics, Vol. 17, Issue 4
  • DOI: 10.1007/BF00733376

Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators
journal, September 2012


Error regions in quantum state tomography: computational complexity caused by geometry of quantum states
journal, September 2017

  • Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.
  • New Journal of Physics, Vol. 19, Issue 9
  • DOI: 10.1088/1367-2630/aa7ce9

Minimax Quantum Tomography: Estimators and Relative Entropy Bounds
journal, March 2016


On Some Principles of Statistical Inference: Principles of Statistical Inference
journal, October 2014

  • Reid, Nancy; Cox, David R.
  • International Statistical Review, Vol. 83, Issue 2
  • DOI: 10.1111/insr.12067

IPython: A System for Interactive Scientific Computing
journal, January 2007

  • Perez, Fernando; Granger, Brian E.
  • Computing in Science & Engineering, Vol. 9, Issue 3
  • DOI: 10.1109/MCSE.2007.53

Entanglement Verification with Finite Data
journal, October 2010


Quantum-state estimation
journal, March 1997


Maximum-likelihood coherent-state quantum process tomography
journal, October 2012


The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses
journal, March 1938


Matplotlib: A 2D Graphics Environment
journal, January 2007


Bayesian measures of model complexity and fit
journal, October 2002

  • Spiegelhalter, David J.; Best, Nicola G.; Carlin, Bradley P.
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 64, Issue 4
  • DOI: 10.1111/1467-9868.00353

Gradient-based stopping rules for maximum-likelihood quantum-state tomography
journal, September 2012


Python for Scientific Computing
journal, January 2007


On the Assumptions Used to Prove Asymptotic Normality of Maximum Likelihood Estimates
journal, June 1970


The NumPy Array: A Structure for Efficient Numerical Computation
journal, March 2011

  • van der Walt, Stéfan; Colbert, S. Chris; Varoquaux, Gaël
  • Computing in Science & Engineering, Vol. 13, Issue 2
  • DOI: 10.1109/MCSE.2011.37

Efficient Method for Computing the Maximum-Likelihood Quantum State from Measurements with Additive Gaussian Noise
journal, February 2012


mwaskom/seaborn: v0.11.1 (December 2020)
software, December 2020


    Works referencing / citing this record:

    Quantum gate teleportation between separated qubits in a trapped-ion processor
    journal, May 2019