skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

Abstract

Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg 2+ cannot penetrate such interphases. Here, we engineer an artificial Mg 2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V 2O 5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

Authors:
 [1];  [2];  [1];  [3];  [4];  [1];  [2];  [5];  [5];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Univ. of Maryland, College Park, MD (United States)
  3. Colorado School of Mines, Golden, CO (United States)
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  5. Army Research Lab., Adelphi, MD (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), NREL Laboratory Directed Research and Development (LDRD)
OSTI Identifier:
1432192
Report Number(s):
NREL/JA-5900-66801
Journal ID: ISSN 1755-4330; TRN: US1802409
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nature Chemistry
Additional Journal Information:
Journal Volume: 10; Journal Issue: 5; Journal ID: ISSN 1755-4330
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; energy storage; Mg-ion battery; surface modification

Citation Formats

Son, Seoung-Bum, Gao, Tao, Harvey, Steve P., Steirer, K. Xerxes, Stokes, Adam, Norman, Andrew, Wang, Chunsheng, Cresce, Arthur, Xu, Kang, and Ban, Chunmei. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. United States: N. p., 2018. Web. doi:10.1038/s41557-018-0019-6.
Son, Seoung-Bum, Gao, Tao, Harvey, Steve P., Steirer, K. Xerxes, Stokes, Adam, Norman, Andrew, Wang, Chunsheng, Cresce, Arthur, Xu, Kang, & Ban, Chunmei. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. United States. doi:10.1038/s41557-018-0019-6.
Son, Seoung-Bum, Gao, Tao, Harvey, Steve P., Steirer, K. Xerxes, Stokes, Adam, Norman, Andrew, Wang, Chunsheng, Cresce, Arthur, Xu, Kang, and Ban, Chunmei. Mon . "An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes". United States. doi:10.1038/s41557-018-0019-6. https://www.osti.gov/servlets/purl/1432192.
@article{osti_1432192,
title = {An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes},
author = {Son, Seoung-Bum and Gao, Tao and Harvey, Steve P. and Steirer, K. Xerxes and Stokes, Adam and Norman, Andrew and Wang, Chunsheng and Cresce, Arthur and Xu, Kang and Ban, Chunmei},
abstractNote = {Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.},
doi = {10.1038/s41557-018-0019-6},
journal = {Nature Chemistry},
number = 5,
volume = 10,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnesium batteries: Current state of the art, issues and future perspectives
journal, January 2014

  • Mohtadi, Rana; Mizuno, Fuminori
  • Beilstein Journal of Nanotechnology, Vol. 5
  • DOI: 10.3762/bjnano.5.143

Anisotropy of Electronic and Ionic Transport in LiFePO[sub 4] Single Crystals
journal, January 2007

  • Amin, Ruhul; Balaya, Palani; Maier, Joachim
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 1
  • DOI: 10.1149/1.2388240

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 51, Issue 39, p. 9780-9783
  • DOI: 10.1002/anie.201204913

A review of heat treatment on polyacrylonitrile fiber
journal, August 2007


A novel inorganic solid state ion conductor for rechargeable Mg batteries
journal, January 2014

  • Higashi, Shougo; Miwa, Kazutoshi; Aoki, Masakazu
  • Chem. Commun., Vol. 50, Issue 11
  • DOI: 10.1039/C3CC47097K

Is alpha-V2O5 a cathode material for Mg insertion batteries?
journal, August 2016


Role of Structural H 2 O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V 2 O 5
journal, March 2016

  • Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele; Richards, William Davidson
  • Nano Letters, Vol. 16, Issue 4
  • DOI: 10.1021/acs.nanolett.5b05273

Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes
journal, January 1993

  • Novák, Petr
  • Journal of The Electrochemical Society, Vol. 140, Issue 1
  • DOI: 10.1149/1.2056075

Anode Material Associated with Polymeric Networking of Triflate Ions Formed on Mg
journal, February 2015

  • Shiga, Tohru; Kato, Yuichi; Inoue, Masae
  • The Journal of Physical Chemistry C, Vol. 119, Issue 7
  • DOI: 10.1021/jp5114015

Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application
journal, November 2010

  • Pandey, G. P.; Agrawal, R. C.; Hashmi, S. A.
  • Journal of Solid State Electrochemistry, Vol. 15, Issue 10
  • DOI: 10.1007/s10008-010-1240-4

Bulk and surface chemical functionalities of type III PAN-based carbon fibres
journal, January 2003


Nonaqueous magnesium electrochemistry and its application in secondary batteries
journal, January 2003

  • Aurbach, Doron; Weissman, Idit; Gofer, Yosef
  • The Chemical Record, Vol. 3, Issue 1, p. 61-73
  • DOI: 10.1002/tcr.10051

Positronenannihilationsuntersuchungen zur Ausheilung von Kristallbaufehlern in plastisch verformten PdFe-Legierungen
journal, July 1977


Magnesium insertion electrodes for rechargeable nonaqueous batteries — a competitive alternative to lithium?
journal, September 1999


Progress in Rechargeable Magnesium Battery Technology
journal, December 2007


Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte
journal, January 1974

  • Selim, R.; Bro, P.
  • Journal of The Electrochemical Society, Vol. 121, Issue 11
  • DOI: 10.1149/1.2401708

Mapping the Challenges of Magnesium Battery
journal, April 2016

  • Song, Jaehee; Sahadeo, Emily; Noked, Malachi
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 9
  • DOI: 10.1021/acs.jpclett.6b00384

Conformal Coatings of Cyclized-PAN for Mechanically Resilient Si nano-Composite Anodes
journal, March 2013

  • Piper, Daniela Molina; Yersak, Thomas A.; Son, Seoung-Bum
  • Advanced Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1002/aenm.201200850

Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries
journal, February 2010

  • Glushenkov, Alexey M.; Hassan, Mohd Faiz; Stukachev, Vladimir I.
  • Journal of Solid State Electrochemistry, Vol. 14, Issue 10
  • DOI: 10.1007/s10008-010-1016-x

A Stabilized PAN-FeS 2 Cathode with an EC/DEC Liquid Electrolyte
journal, October 2013

  • Son, Seoung-Bum; Yersak, Thomas A.; Piper, Daniela Molina
  • Advanced Energy Materials, Vol. 4, Issue 3
  • DOI: 10.1002/aenm.201300961

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Micro- and Nano-Structured Vanadium Pentoxide (V 2 O 5 ) for Electrodes of Lithium-Ion Batteries
journal, May 2017


Solid-State Rechargeable Magnesium Batteries
journal, April 2003

  • Chusid, O.; Gofer, Y.; Gizbar, H.
  • Advanced Materials, Vol. 15, Issue 78, p. 627-630
  • DOI: 10.1002/adma.200304415

Study on electrochemically deposited Mg metal
journal, August 2011


Structural and Electrochemical Properties of ω-Li[sub x]V[sub 2]O[sub 5] (0.4≤x≤3) as Rechargeable Cathodic Material for Lithium Batteries
journal, January 2005

  • Leger, C.; Bach, S.; Soudan, P.
  • Journal of The Electrochemical Society, Vol. 152, Issue 1
  • DOI: 10.1149/1.1836155

Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content
journal, October 2004


Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries
journal, March 2014

  • Ha, Se-Young; Lee, Yong-Won; Woo, Sang Won
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 6, p. 4063-4073
  • DOI: 10.1021/am405619v

Electrodeposition of Metals from Organic Solutions
journal, January 1957

  • Connor, Jean H.; Reid, Walter E.; Wood, Gwendolyn B.
  • Journal of The Electrochemical Society, Vol. 104, Issue 1
  • DOI: 10.1149/1.2428492

Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology
journal, August 2012


Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:  A Molecular Picture
journal, November 2004

  • Brédas, Jean-Luc; Beljonne, David; Coropceanu, Veaceslav
  • Chemical Reviews, Vol. 104, Issue 11
  • DOI: 10.1021/cr040084k

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond
journal, October 2014

  • Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500049y

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

Electrochemical Insertion of Magnesium into Hydrated Vanadium Bronzes
journal, January 1995

  • Novák, Petr; Scheifele, Werner; Joho, Felix
  • Journal of The Electrochemical Society, Vol. 142, Issue 8, p. 2544-2550
  • DOI: 10.1149/1.2050051

On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions
journal, May 1999


The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates
journal, September 2000


Unraveling the Magnesium-Ion Intercalation Mechanism in Vanadium Pentoxide in a Wet Organic Electrolyte by Structural Determination
journal, June 2017


Nonaqueous Electrochemistry of Magnesium
journal, January 1990

  • Gregory, Thomas D.; Hoffman, Ronald J.; Winterton, Richard C.
  • Journal of The Electrochemical Society, Vol. 137, Issue 3, p. 775-780
  • DOI: 10.1149/1.2086553

The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries
journal, May 2015


Metal–organic frameworks as solid magnesium electrolytes
journal, January 2014

  • Aubrey, M. L.; Ameloot, R.; Wiers, B. M.
  • Energy & Environmental Science, Vol. 7, Issue 2
  • DOI: 10.1039/c3ee43143f

Electrolyte roadblocks to a magnesium rechargeable battery
journal, January 2012

  • Muldoon, John; Bucur, Claudiu B.; Oliver, Allen G.
  • Energy & Environmental Science, Vol. 5, Issue 3, p. 5941-5950
  • DOI: 10.1039/c2ee03029b

Electrochemical and Spectroscopic Analysis of Mg 2+ Intercalation into Thin Film Electrodes of Layered Oxides: V 2 O 5 and MoO 3
journal, August 2013

  • Gershinsky, Gregory; Yoo, Hyun Deog; Gofer, Yosef
  • Langmuir, Vol. 29, Issue 34
  • DOI: 10.1021/la402391f

Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate
journal, April 2013

  • Borodin, Oleg; Zhuang, Guorong V.; Ross, Philip N.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp4000494

Theoretical study on the initial stage of a magnesium battery based on a V 2 O 5 cathode
journal, January 2014

  • Zhou, Bo; Shi, Hui; Cao, Rongfang
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02230K