skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 17, 2019

Title: Effect of chemical pressure on the crystal electric field states of erbium pyrochlore magnets

We have carried out a systematic study of the crystal electric field excitations in the family of cubic pyrochlores Er 2B 2O 7 with B=Ge, Ti, Pt, and Sn, using neutron spectroscopy. All members of this family are magnetic insulators based on 4f 11Er 3+ and nonmagnetic B 4+. At sufficiently low temperatures, long-range antiferromagnetic order is observed in each of these Er 2B 2O 7 pyrochlores. The different ionic sizes associated with different nonmagnetic B 4+ cations correspond to positive or negative chemical pressure, depending on the relative contraction or expansion of the crystal lattice, which gives rise to different local environments at the Er 3+ site. Our results show that the g-tensor components are XY-like for all four members of the Er 2B 2O 7 series. However, the XY anisotropy is much stronger for Er 2Pt 2O 7 and Er 2Sn 2O 7(g⊥/gz>25) than for Er 2Ge 2O 7 and Er 2Ti 2O 7(g⊥/gz<4). The variation in the nature of the XY anisotropy in these systems correlates strongly with their ground states as Er 2Ge 2O 7 and Er 2Ti 2O 7 order into Γ 5 magnetic structures, whereas Er 2Pt 2O 7 and Er 2Sn 2O 7more » order in the Γ 7 Palmer-Chalker structure.« less
Authors:
 [1] ;  [1] ; ORCiD logo [2] ;  [3]
  1. McMaster Univ., Hamilton, ON (Canada)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. McMaster Univ., Hamilton, ON (Canada); Brockhouse Inst. for Materials Research, Hamilton, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 2; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1432150
Alternate Identifier(s):
OSTI ID: 1417229