Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Cente
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
- General Atomics, San Diego, CA (United States)
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
- Research Organization:
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- FC02-99ER54512; SC0014264
- OSTI ID:
- 1432046
- Alternate ID(s):
- OSTI ID: 1421579
- Journal Information:
- Physical Review Letters, Vol. 120, Issue 7; ISSN 0031-9007
- Publisher:
- American Physical Society (APS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Local transport dynamics of cold pulses in tokamak plasmas
Perturbative transport modeling of cold-pulse dynamics in Alcator C-Mod Ohmic plasmas