skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements

Abstract

In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings. Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [1];  [2];  [4]
  1. Brookhaven National Laboratory (BNL), Upton, NY (United States)
  2. Univ. of Wyoming, Laramie, WY (United States). Dept. of Atmospheric Science
  3. Brookhaven National Laboratory (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States). School of Marine and Atmospheric Sciences
  4. Chinese Academy of Sciences, Hefei (China). Key Lab. of Atmospheric Optics
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Aeronautic and Space Administration (NASA)
OSTI Identifier:
1431453
Report Number(s):
BNL-203456-2018-JAAM
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
SC0012704; NNX13AQ41G
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 18; Journal Issue: 6; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 47 OTHER INSTRUMENTATION

Citation Formats

Zhang, Damao, Wang, Zhien, Kollias, Pavlos, Vogelmann, Andrew M., Yang, Kang, and Luo, Tao. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. United States: N. p., 2018. Web. doi:10.5194/acp-18-4317-2018.
Zhang, Damao, Wang, Zhien, Kollias, Pavlos, Vogelmann, Andrew M., Yang, Kang, & Luo, Tao. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. United States. doi:10.5194/acp-18-4317-2018.
Zhang, Damao, Wang, Zhien, Kollias, Pavlos, Vogelmann, Andrew M., Yang, Kang, and Luo, Tao. Wed . "Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements". United States. doi:10.5194/acp-18-4317-2018. https://www.osti.gov/servlets/purl/1431453.
@article{osti_1431453,
title = {Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements},
author = {Zhang, Damao and Wang, Zhien and Kollias, Pavlos and Vogelmann, Andrew M. and Yang, Kang and Luo, Tao},
abstractNote = {In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings. Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.},
doi = {10.5194/acp-18-4317-2018},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 6,
volume = 18,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Effect of Dynamics on Mixed-Phase Clouds: Theoretical Considerations
journal, January 2008

  • Korolev, Alexei; Field, Paul R.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 1
  • DOI: 10.1175/2007JAS2355.1

Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties
journal, March 2011

  • Shupe, Matthew D.; Walden, Von P.; Eloranta, Edwin
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2467.1

Phase transformation of mixed-phase clouds
journal, January 2003

  • Korolev, Alexei; Isaac, George
  • Quarterly Journal of the Royal Meteorological Society, Vol. 129, Issue 587
  • DOI: 10.1256/qj.01.203

Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds
journal, January 2011

  • Lance, S.; Shupe, M. D.; Feingold, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-8003-2011

CloudSat mission: Performance and early science after the first year of operation
journal, January 2008

  • Stephens, Graeme L.; Vane, Deborah G.; Tanelli, Simone
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2008JD009982

A glaciation indirect aerosol effect caused by soot aerosols
journal, January 2002


Initial performance assessment of CALIOP
journal, January 2007

  • Winker, David M.; Hunt, William H.; McGill, Matthew J.
  • Geophysical Research Letters, Vol. 34, Issue 19
  • DOI: 10.1029/2007GL030135

Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments
journal, January 2012


The CALIPSO Mission: A Global 3D View of Aerosols and Clouds
journal, September 2010

  • Winker, D. M.; Pelon, J.; Coakley, J. A.
  • Bulletin of the American Meteorological Society, Vol. 91, Issue 9
  • DOI: 10.1175/2010BAMS3009.1

Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models: ICE ASPECT INFLUENCES ON CLOUDS
journal, November 2011

  • Sulia, Kara J.; Harrington, Jerry Y.
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D21
  • DOI: 10.1029/2011JD016298

Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites: ANTARCTIC CLOUDS, CLOUDSAT AND CALIPSO
journal, February 2012

  • Adhikari, Loknath; Wang, Zhien; Deng, Min
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D4
  • DOI: 10.1029/2011JD016719

An Arctic CCN-limited cloud-aerosol regime
journal, January 2011

  • Mauritsen, T.; Sedlar, J.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 1
  • DOI: 10.5194/acp-11-165-2011

Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds: DUST IMPACTS ON ICE GENERATION
journal, September 2012

  • Zhang, Damao; Wang, Zhien; Heymsfield, Andrew
  • Geophysical Research Letters, Vol. 39, Issue 18
  • DOI: 10.1029/2012GL052831

Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies
journal, January 2012

  • Birch, C. E.; Brooks, I. M.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 7
  • DOI: 10.5194/acp-12-3419-2012

Multimodel evaluation of cloud phase transition using satellite and reanalysis data
journal, August 2015

  • Cesana, G.; Waliser, D. E.; Jiang, X.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 15
  • DOI: 10.1002/2014JD022932

Ice nucleation by particles immersed in supercooled cloud droplets
journal, January 2012

  • Murray, B. J.; O'Sullivan, D.; Atkinson, J. D.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35200a

Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site
journal, January 2010

  • Seifert, P.; Ansmann, A.; Mattis, I.
  • Journal of Geophysical Research, Vol. 115, Issue D20
  • DOI: 10.1029/2009JD013222

The formation of ice in a long-lived supercooled layer cloud: Ice Formation in Altocumulus
journal, January 2013

  • Westbrook, C. D.; Illingworth, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 139, Issue 677
  • DOI: 10.1002/qj.2096

Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation: AEROSOL EFFECT ON ICE FORMATION
journal, September 2011

  • Kanitz, T.; Seifert, P.; Ansmann, A.
  • Geophysical Research Letters, Vol. 38, Issue 17
  • DOI: 10.1029/2011GL048532

Studies of the radiative properties of ice and mixed-phase clouds
journal, January 1994

  • Sun, Zhian; Shine, Keith P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 120, Issue 515
  • DOI: 10.1002/qj.49712051508

A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements
journal, January 2010

  • Zhang, Damao; Wang, Zhien; Liu, Dong
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012143

Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations
journal, October 2014

  • Zhang, Damao; Wang, Zhien; Heymsfield, Andrew
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 10
  • DOI: 10.1175/JAS-D-13-0354.1

Resurgence in Ice Nuclei Measurement Research
journal, December 2011

  • DeMott, Paul J.; Möhler, Ottmar; Stetzer, Olaf
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 12
  • DOI: 10.1175/2011BAMS3119.1

The role of cloud phase in Earth's radiation budget: CLOUD PHASE IN EARTH'S RADIATION BUDGET
journal, March 2017

  • Matus, Alexander V.; L'Ecuyer, Tristan S.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 5
  • DOI: 10.1002/2016JD025951

Unique manifestations of mixed‐phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica
journal, March 2016

  • Scott, Ryan C.; Lubin, Dan
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067246

THE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of Clouds and Precipitation
journal, December 2002

  • Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald J.
  • Bulletin of the American Meteorological Society, Vol. 83, Issue 12
  • DOI: 10.1175/BAMS-83-12-1771

Global dust distribution from improved thin dust layer detection using A-train satellite lidar observations: Improved Global Dust Distribution
journal, January 2015

  • Luo, Tao; Wang, Zhien; Zhang, Damao
  • Geophysical Research Letters, Vol. 42, Issue 2
  • DOI: 10.1002/2014GL062111

A ground-based multisensor cloud phase classifier
journal, January 2007


On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs: CLOUD COVER, MIXED-PHASE, AND ALBEDO
journal, May 2016

  • McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.
  • Journal of Advances in Modeling Earth Systems, Vol. 8, Issue 2
  • DOI: 10.1002/2015MS000589

Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study
journal, January 2011

  • Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JD015375

Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar: SUPERCOOLED CLOUDS DETECTED BY LITE
journal, March 2004

  • Hogan, Robin J.; Behera, Mukunda D.; O'Connor, Ewan J.
  • Geophysical Research Letters, Vol. 31, Issue 5
  • DOI: 10.1029/2003GL018977

Cloud Liquid Water Path from Satellite-Based Passive Microwave Observations: A New Climatology over the Global Oceans
journal, April 2008

  • O’Dell, Christopher W.; Wentz, Frank J.; Bennartz, Ralf
  • Journal of Climate, Vol. 21, Issue 8
  • DOI: 10.1175/2007JCLI1958.1

Using surface remote sensors to derive radiative characteristics of Mixed-Phase Clouds: an example from M-PACE
journal, January 2011


Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds
journal, June 2014

  • Tan, Ivy; Storelvmo, Trude; Choi, Yong-Sang
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021333

What determines altocumulus dissipation time?
journal, January 2006

  • Larson, Vincent E.; Smith, Adam J.; Falk, Michael J.
  • Journal of Geophysical Research, Vol. 111, Issue D19
  • DOI: 10.1029/2005JD007002

Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors: LIQUID INDUCED ICE NUCLEATION
journal, January 2011

  • de Boer, G.; Morrison, H.; Shupe, M. D.
  • Geophysical Research Letters, Vol. 38, Issue 1
  • DOI: 10.1029/2010GL046016

Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station
journal, January 2016

  • Bühl, Johannes; Seifert, Patric; Myagkov, Alexander
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 16
  • DOI: 10.5194/acp-16-10609-2016