skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

Abstract

A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. Furthermore, the GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.

Authors:
 [1];  [2]; ORCiD logo [3];  [4];  [5]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. Corp. for Atmospheric Research, Boulder, CO (United States)
  4. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  5. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), NREL Alliance Partner University Program (APUP); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1431425
Alternate Identifier(s):
OSTI ID: 1414604; OSTI ID: 1524289
Report Number(s):
NREL/JA-5000-71250; LLNL-JRNL-763489
Journal ID: ISSN 1941-7012
Grant/Contract Number:  
AC36-08GO28308; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Renewable and Sustainable Energy
Additional Journal Information:
Journal Volume: 9; Journal Issue: 6; Journal ID: ISSN 1941-7012
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; aerodynamics; turbulent flows; vortex dynamics; eddies; Energy - Wind

Citation Formats

Marjanovic, Nikola, Mirocha, Jeffrey D., Kosovic, Branko, Lundquist, Julie K., and Chow, Fotini Katopodes. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model. United States: N. p., 2017. Web. doi:10.1063/1.4989443.
Marjanovic, Nikola, Mirocha, Jeffrey D., Kosovic, Branko, Lundquist, Julie K., & Chow, Fotini Katopodes. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model. United States. doi:10.1063/1.4989443.
Marjanovic, Nikola, Mirocha, Jeffrey D., Kosovic, Branko, Lundquist, Julie K., and Chow, Fotini Katopodes. Fri . "Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model". United States. doi:10.1063/1.4989443. https://www.osti.gov/servlets/purl/1431425.
@article{osti_1431425,
title = {Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model},
author = {Marjanovic, Nikola and Mirocha, Jeffrey D. and Kosovic, Branko and Lundquist, Julie K. and Chow, Fotini Katopodes},
abstractNote = {A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. Furthermore, the GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.},
doi = {10.1063/1.4989443},
journal = {Journal of Renewable and Sustainable Energy},
number = 6,
volume = 9,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model
journal, May 2014

  • Aitken, Matthew L.; Kosović, Branko; Mirocha, Jeffrey D.
  • Journal of Renewable and Sustainable Energy, Vol. 6, Issue 3
  • DOI: 10.1063/1.4885111

Observations of wind turbine wakes and surface roughness effects on wind flow variability
journal, January 1990


Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study
journal, July 2012

  • Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando
  • Boundary-Layer Meteorology, Vol. 146, Issue 2
  • DOI: 10.1007/s10546-012-9751-4

An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes
journal, November 2007

  • Basu, Sukanta; Holtslag, Albert A. M.; Van De Wiel, Bas J. H.
  • Acta Geophysica, Vol. 56, Issue 1
  • DOI: 10.2478/s11600-007-0038-y

Atmospheric stability affects wind turbine power collection
journal, January 2012


A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction
journal, April 2011

  • Zajaczkowski, Frank J.; Haupt, Sue Ellen; Schmehl, Kerrie J.
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, Issue 4
  • DOI: 10.1016/j.jweia.2011.01.023

Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound
journal, January 1993

  • Rye, B. J.; Hardesty, R. M.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, Issue 1
  • DOI: 10.1109/36.210440

Review of computational fluid dynamics for wind turbine wake aerodynamics
journal, February 2011

  • Sanderse, B.; Pijl, S. P.; Koren, B.
  • Wind Energy, Vol. 14, Issue 7, p. 799-819
  • DOI: 10.1002/we.458

The modification of wind turbine performance by statistically distinct atmospheric regimes
journal, September 2012


Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow
journal, June 2007


Analysis of wake states by a full‐field actuator disc model
journal, December 1998


The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar
journal, July 2013


The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms
journal, September 2015

  • Dörenkämper, Martin; Witha, Björn; Steinfeld, Gerald
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 144
  • DOI: 10.1016/j.jweia.2014.12.011

Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm
journal, May 2013

  • Rajewski, Daniel A.; Takle, Eugene S.; Lundquist, Julie K.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 5
  • DOI: 10.1175/BAMS-D-11-00240.1

Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars
journal, June 2012

  • Hirth, Brian D.; Schroeder, John L.; Gunter, W. Scott
  • Journal of Atmospheric and Oceanic Technology, Vol. 29, Issue 6, p. 765-771
  • DOI: 10.1175/JTECH-D-12-00039.1

Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model
journal, September 2012

  • Fitch, Anna C.; Olson, Joseph B.; Lundquist, Julie K.
  • Monthly Weather Review, Vol. 140, Issue 9
  • DOI: 10.1175/MWR-D-11-00352.1

Investigating wind turbine impacts on near-wake flow using profiling lidar data and large-eddy simulations with an actuator disk model
journal, July 2015

  • Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola
  • Journal of Renewable and Sustainable Energy, Vol. 7, Issue 4
  • DOI: 10.1063/1.4928873

Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers
journal, April 1997


Fatigue loads for wind turbines operating in wakes
journal, March 1999

  • Thomsen, Kenneth; Sørensen, Poul
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 80, Issue 1-2
  • DOI: 10.1016/S0167-6105(98)00194-9

Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm
journal, August 2014


Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake
journal, November 2013

  • Smalikho, I. N.; Banakh, V. A.; Pichugina, Y. L.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 11
  • DOI: 10.1175/JTECH-D-12-00108.1

Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm
journal, July 2011

  • Wharton, Sonia; Lundquist, Julie K.
  • Wind Energy, Vol. 15, Issue 4, p. 525-546
  • DOI: 10.1002/we.483

Analysis of numerically generated wake structures
journal, January 2009

  • Ivanell, Stefan; Sørensen, Jens N.; Mikkelsen, Robert
  • Wind Energy, Vol. 12, Issue 1
  • DOI: 10.1002/we.285

A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines
journal, February 2013

  • Churchfield, Matthew J.; Li, Ye; Moriarty, Patrick J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371, Issue 1985
  • DOI: 10.1098/rsta.2012.0421

Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling
journal, February 2010


Numerical simulations of wake characteristics of a wind turbine in uniform inflow
journal, January 2010

  • Troldborg, Niels; Sorensen, Jens N.; Mikkelsen, Robert
  • Wind Energy, Vol. 13, Issue 1
  • DOI: 10.1002/we.345

Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data
journal, April 2014

  • Aitken, Matthew L.; Banta, Robert M.; Pichugina, Yelena L.
  • Journal of Atmospheric and Oceanic Technology, Vol. 31, Issue 4
  • DOI: 10.1175/JTECH-D-13-00104.1

Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
journal, April 2011

  • Porté-Agel, Fernando; Wu, Yu-Ting; Lu, Hao
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, Issue 4
  • DOI: 10.1016/j.jweia.2011.01.011

A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer
journal, April 2000


Optimal turbine spacing in fully developed wind farm boundary layers
journal, April 2011

  • Meyers, Johan; Meneveau, Charles
  • Wind Energy, Vol. 15, Issue 2, p. 305-317
  • DOI: 10.1002/we.469

Large Eddy Simulation of wind farm aerodynamics: A review
journal, October 2014

  • Mehta, D.; van Zuijlen, A. H.; Koren, B.
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 133
  • DOI: 10.1016/j.jweia.2014.07.002

A field study of the wake behind a 2 MW wind turbine
journal, January 1988


A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics
journal, January 2012


Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study
journal, December 2012

  • Wu, Yu-Ting; Porté-Agel, Fernando
  • Energies, Vol. 5, Issue 12
  • DOI: 10.3390/en5125340

Numerical Modeling of Wind Turbine Wakes
journal, May 2002

  • So̸rensen, Jens No̸rkær; Shen, Wen Zhong
  • Journal of Fluids Engineering, Vol. 124, Issue 2
  • DOI: 10.1115/1.1471361

Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations
journal, December 2010


Wind turbine wake aerodynamics
journal, August 2003


Instability of helical tip vortices in rotor wakes
journal, August 2011


On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow
journal, March 2014

  • Kang, Seokkoo; Yang, Xiaolei; Sotiropoulos, Fotis
  • Journal of Fluid Mechanics, Vol. 744
  • DOI: 10.1017/jfm.2014.82

Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms
journal, August 2010

  • Barthelmie, R. J.; Pryor, S. C.; Frandsen, S. T.
  • Journal of Atmospheric and Oceanic Technology, Vol. 27, Issue 8, p. 1302-1317
  • DOI: 10.1175/2010JTECHA1398.1

Anisotropy of turbulence in wind turbine wakes
journal, October 2005

  • Gómez-Elvira, Rafael; Crespo, Antonio; Migoya, Emilio
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 93, Issue 10
  • DOI: 10.1016/j.jweia.2005.08.001

Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics
journal, January 2015

  • Lundquist, J. K.; Churchfield, M. J.; Lee, S.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 2
  • DOI: 10.5194/amt-8-907-2015

Research Needs For Wind Resource Characterization
journal, April 2009

  • Shaw, William J.; Lundquist, Julie K.; Schreck, Scott J.
  • Bulletin of the American Meteorological Society, Vol. 90, Issue 4
  • DOI: 10.1175/2008BAMS2729.1

Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications
journal, January 2014

  • Mirocha, J. D.; Kosovic, B.; Aitken, M. L.
  • Journal of Renewable and Sustainable Energy, Vol. 6, Issue 1
  • DOI: 10.1063/1.4861061

Air flow behind wind turbines
journal, March 1999


ENDOW: Efficient Development of Offshore Windfarms
journal, September 2001