skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy

Abstract

In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derived radicals (R•) and solvated protons. Upon addition of formate (HCO 2 ), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 (R• + HCO 2 → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 also results in over a hundredfold increase in the COmore » 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 , about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less

Authors:
ORCiD logo [1];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1430880
Alternate Identifier(s):
OSTI ID: 1434142
Report Number(s):
BNL-203439-2018-JAAM
Journal ID: ISSN 1463-9076; TRN: US1802422
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 20; Journal Issue: 15; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY

Citation Formats

Grills, David Charles, and Lymar, Sergei. Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy. United States: N. p., 2018. Web. doi:10.1039/C8CP00977E.
Grills, David Charles, & Lymar, Sergei. Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy. United States. doi:10.1039/C8CP00977E.
Grills, David Charles, and Lymar, Sergei. Thu . "Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy". United States. doi:10.1039/C8CP00977E. https://www.osti.gov/servlets/purl/1430880.
@article{osti_1430880,
title = {Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy},
author = {Grills, David Charles and Lymar, Sergei},
abstractNote = {In this study, the solvated electron in CH3CN is scavenged by CO2 with a rate constant of 3.2 × 1010 M–1 s–1 to produce the carbon dioxide radical anion (CO2•–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm–1 corresponding to the antisymmetric CO2•– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH3CN, CO2•– decays on a ~10 μs time scale via recombination with solvent-derived radicals (R•) and solvated protons. Upon addition of formate (HCO2–), the radiation yield of CO2•– is substantially increased due to H-atom abstraction by R• from HCO2– (R• + HCO2– → RH + CO2•–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH2CN•. The removal of solvent radicals by HCO2– also results in over a hundredfold increase in the CO2•– lifetime. CO2•– scavenging experiments suggest that at 50 mM HCO2–, about 60% of the solvent-derived radicals are engaged in CO2•– generation. Finally, even under CO2 saturation, no formation of the radical adduct, (CO2)2•–, could be detected on the microsecond time scale.},
doi = {10.1039/C8CP00977E},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 15,
volume = 20,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Scheme 1 Scheme 1: (a) Early radiolysis events in CH3CN leading to the solvated electron and primary solvent‐derived radicals (R*). (b) Reactions of primary radicals with solvent; the CH3CNH+ product of reaction (3) is equivalent to the solvated proton.

Save / Share:

Works referenced in this record:

Solute ion and radical formation in the pulse radiolysis of acetonitrile solutions
journal, January 1974

  • Baptista, João L.; Burrows, Hugh D.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 70, Issue 0
  • DOI: 10.1039/f19747002066

Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report)
journal, December 2015

  • Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.
  • Pure and Applied Chemistry, Vol. 87, Issue 11-12
  • DOI: 10.1515/pac-2014-0502

Application of Pulse Radiolysis to Mechanistic Investigations of Water Oxidation Catalysis: Mechanistic Investigations of Water Oxidation Catalysis
journal, September 2013

  • Polyansky, Dmitry E.; Hurst, James K.; Lymar, Sergei V.
  • European Journal of Inorganic Chemistry, Vol. 2014, Issue 4
  • DOI: 10.1002/ejic.201300753

Standard potential and kinetic parameters of the electrochemical reduction of carbon dioxide in dimethylformamide
journal, May 1977

  • Lamy, E.; Nadjo, L.; Saveant, J. M.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 78, Issue 2
  • DOI: 10.1016/S0022-0728(77)80143-5

Radiation Chemistry of Triphenylsulfonium Salts in EB and X-Ray Chemically Amplified Resists-Proton Generation Mechanisms.
journal, January 1998

  • Nagahara, Seiji; Kozawa, Takahiro; Yamamoto, Yukio
  • Journal of Photopolymer Science and Technology, Vol. 11, Issue 4
  • DOI: 10.2494/photopolymer.11.577

Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability
journal, August 1981

  • Amatore, Christian; Saveant, Jean Michel
  • Journal of the American Chemical Society, Vol. 103, Issue 17
  • DOI: 10.1021/ja00407a008

Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)2. ? dimer radical anion
journal, January 2001


The Gamma Radiolysis of Acetonitrile
journal, February 1968

  • Ayscough, P. B.; Drawe, H.; Kohler, P.
  • Radiation Research, Vol. 33, Issue 2
  • DOI: 10.2307/3572477

Luminescence and redox reactions of the metal-to-ligand charge-transfer excited state of tricarbonylchloro-(polypyridyl)rhenium(I) complexes
journal, January 1986

  • Kalyanasundaram, Kuppuswamy
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 82, Issue 12
  • DOI: 10.1039/f29868202401

Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media
journal, August 1994

  • Hori, Yoshio; Wakebe, Hidetoshi; Tsukamoto, Toshio
  • Electrochimica Acta, Vol. 39, Issue 11-12, p. 1833-1839
  • DOI: 10.1016/0013-4686(94)85172-7

Ultrafast Studies of Excess Electrons in Liquid Acetonitrile: Revisiting the Solvated Electron/Solvent Dimer Anion Equilibrium
journal, July 2012

  • Doan, Stephanie C.; Schwartz, Benjamin J.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 16
  • DOI: 10.1021/jp303591h

Femtosecond electron ejection in liquid acetonitrile: Evidence for cavity electrons and solvent anions
journal, November 2002

  • Xia, Chungeng; Peon, Jorge; Kohler, Bern
  • The Journal of Chemical Physics, Vol. 117, Issue 19
  • DOI: 10.1063/1.1513152

Chemical reaction rates of quasi-free electrons in non-polar liquids. The equilibrium CO2 + e− CO2−
journal, March 1975


Infrared Spectrum of Carbon Dioxide Anion Radical
journal, March 1966

  • Hartman, K. O.; Hisatsune, I. C.
  • The Journal of Chemical Physics, Vol. 44, Issue 5
  • DOI: 10.1063/1.1726961

Studies of e− + CO2 ⇌ CO2− equilibria in hexamethyldisiloxane and bis(trimethylsilyl) methane
journal, February 1997


ESR measurement of the pKa of carboxyl radical and ab initio calculation of the carbon-13 hyperfine constant
journal, February 1990

  • Jeevarajan, A. S.; Carmichael, Ian.; Fessenden, Richard W.
  • The Journal of Physical Chemistry, Vol. 94, Issue 4
  • DOI: 10.1021/j100367a033

Solvated electron in acetonitrile
journal, September 1968


Pulse radiolysis of aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids
journal, December 1969

  • Neta, Pedatsur; Simic, Miomir; Hayon, Elie
  • The Journal of Physical Chemistry, Vol. 73, Issue 12
  • DOI: 10.1021/j100846a029

Photoinduced electron transfer from aliphatic amines to coumarin dyes
journal, January 2002

  • Nad, Sanjukta; Pal, Haridas
  • The Journal of Chemical Physics, Vol. 116, Issue 4
  • DOI: 10.1063/1.1415451

Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

Radiation chemistry of aqueous solutions of simple RCN [hydrogen or alkyl cyanide] compounds
journal, October 1973

  • Draganic, I.; Draganic, Z.; Petkovic, Lj.
  • Journal of the American Chemical Society, Vol. 95, Issue 22
  • DOI: 10.1021/ja00803a001

Electroreduction of carbon dioxide: Part II. The mechanism of reduction in aprotic solvents
journal, July 1985

  • Vassiliev, Yu. B.; Bagotzky, V. S.; Khazova, O. A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 189, Issue 2, p. 295-309
  • DOI: 10.1016/0368-1874(85)80074-5

Studies of electrochemically generated reaction intermediates using modulated specular reflectance spectroscopy
journal, January 1973

  • Aylmer-Kelly, A. W. B.; Bewick, A.; Cantrill, P. R.
  • Faraday Discussions of the Chemical Society, Vol. 56
  • DOI: 10.1039/dc9735600096

Optical spectra and reactivities of radical anions of 4-nitrobenzyl compounds produced by pulse radiolysis of acetonitrile solutions
journal, January 1974

  • Burrows, H. D.; Kosower, Edward M.
  • The Journal of Physical Chemistry, Vol. 78, Issue 2
  • DOI: 10.1021/j100595a006

A pulse radiolysis study of the leucocyanide of malachite green dye in organic solvents
journal, September 1985

  • Bobrowski, K.; Dzierzkowska, G.; Grodkowski, J.
  • The Journal of Physical Chemistry, Vol. 89, Issue 20
  • DOI: 10.1021/j100266a041

Effect of pressure on the equilibrium e- + carbon dioxide .dblharw. CO2- in 2-methylbutane and 2,2-dimethylbutane
journal, September 1993

  • Ninomiya, Shiro; Itoh, Kengo; Nishikawa, Masaru
  • The Journal of Physical Chemistry, Vol. 97, Issue 37
  • DOI: 10.1021/j100139a037

Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution
journal, July 1988

  • Neta, P.; Huie, Robert E.; Ross, Alberta B.
  • Journal of Physical and Chemical Reference Data, Vol. 17, Issue 3
  • DOI: 10.1063/1.555808

Electron Localization in Liquid Acetonitrile
journal, October 2002

  • Shkrob, I. A.; Sauer, M. C.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 39
  • DOI: 10.1021/jp0207580

Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O in Aqueous Solution
journal, April 1988

  • Buxton, George V.; Greenstock, Clive L.; Helman, W. Phillips
  • Journal of Physical and Chemical Reference Data, Vol. 17, Issue 2
  • DOI: 10.1063/1.555805

Matrix isolation and decay kinetics of carbon dioxide and carbonate anion free radicals
journal, August 1970

  • Hisatsune, Isamu C.; Adl, T.; Beahm, Edward C.
  • The Journal of Physical Chemistry, Vol. 74, Issue 17
  • DOI: 10.1021/j100711a013

The radiolysis of liquid acetonitrile
journal, January 1967

  • Bradley, D.; Wilkinson, J.
  • Journal of the Chemical Society A: Inorganic, Physical, Theoretical
  • DOI: 10.1039/j19670000531

Transient phenomena in the pulse radiolysis of retinyl polyenes. 4. Environmental effects on absorption maximum of retinal radical anion
journal, December 1985

  • Bobrowski, K.; Das, P. K.
  • The Journal of Physical Chemistry, Vol. 89, Issue 26
  • DOI: 10.1021/j100272a032

The vibrational spectra of CO2+, (CO2)2+, CO2−, and (CO2)2− trapped in solid neon
journal, September 1999

  • Thompson, Warren E.; Jacox, Marilyn E.
  • The Journal of Chemical Physics, Vol. 111, Issue 10
  • DOI: 10.1063/1.479212

Rate constants for reaction of hydrogen atoms in aqueous solutions
journal, February 1971

  • Schuler, Robert H.; Neta, Pedatsur; Holdren, G. R.
  • The Journal of Physical Chemistry, Vol. 75, Issue 4
  • DOI: 10.1021/j100674a001

Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis
journal, October 2017

  • Grills, David C.; Polyansky, Dmitry E.; Fujita, Etsuko
  • ChemSusChem, Vol. 10, Issue 22
  • DOI: 10.1002/cssc.201701559

Transient Phenomena in the Pulse Radiolysis of Oxoisoaporphine Derivatives in Acetonitrile
journal, October 2008

  • De la Fuente, Julio R.; Kciuk, Gabriel; Sobarzo-Sanchez, Eduardo
  • The Journal of Physical Chemistry A, Vol. 112, Issue 41
  • DOI: 10.1021/jp804470c

Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities
journal, January 1975

  • Compton, R. N.; Reinhardt, P. W.; Cooper, C. D.
  • The Journal of Chemical Physics, Vol. 63, Issue 9
  • DOI: 10.1063/1.431875

Radiation Measurements: Comparison of Radiolysis Effects of Cobalt-60 Gamma rays and 3-6 mev Electrons on Nitrile Systems
journal, October 1963


One- and two-electron pathways in the electrocatalytic reduction of CO 2 by fac-Re(bpy)(CO) 3 Cl (bpy = 2,2′-bipyridine)
journal, January 1985

  • Sullivan, B. Patrick; Bolinger, C. Mark; Conrad, David
  • J. Chem. Soc., Chem. Commun., Issue 20
  • DOI: 10.1039/C39850001414

Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes
journal, February 1974

  • Wrighton, Mark; Morse, David L.
  • Journal of the American Chemical Society, Vol. 96, Issue 4
  • DOI: 10.1021/ja00811a008

Pulse radiolytic investigation of the carboxyl radical in aqueous solution
journal, August 1970

  • Fojtik, A.; Czapski, Gideon; Henglein, A.
  • The Journal of Physical Chemistry, Vol. 74, Issue 17
  • DOI: 10.1021/j100711a008

Theoretical Study of the Reaction of Atomic Hydrogen with Acetonitrile
journal, January 2001

  • Wang, Baoshan; Hou, Hua; Gu, Yueshu
  • The Journal of Physical Chemistry A, Vol. 105, Issue 1
  • DOI: 10.1021/jp0020541

The nature of the CO2− radical anion in water
journal, April 2016

  • Janik, Ireneusz; Tripathi, G. N. R.
  • The Journal of Chemical Physics, Vol. 144, Issue 15
  • DOI: 10.1063/1.4946868

Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents
journal, August 1990

  • Gennaro, Armando; Isse, Abdirisak Ahmed; Vianello, Elio
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 289, Issue 1-2
  • DOI: 10.1016/0022-0728(90)87217-8

The vibrational spectra of molecular ions isolated in solid neon. I. CO + 2 and CO 2
journal, August 1989

  • Jacox, Marilyn E.; Thompson, Warren E.
  • The Journal of Chemical Physics, Vol. 91, Issue 3
  • DOI: 10.1063/1.457100

Acid dissociation constant of the carboxyl radical. Pulse radiolysis studies of aqueous solutions of formic acid and sodium formate
journal, January 1973

  • Buxton, G. V.; Sellers, R. M.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 69, Issue 0
  • DOI: 10.1039/f19736900555

Kinetic and thermodynamic character of reducing species produced on pulse radiolysis of acetonitrile
journal, January 1977

  • Bell, Ian P.; Rodgers, Michael A. J.; Burrows, Hugh D.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 73, Issue 0
  • DOI: 10.1039/f19777300315

Turning on the Protonation-First Pathway for Electrocatalytic CO 2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes
journal, February 2017

  • Ngo, Ken T.; McKinnon, Meaghan; Mahanti, Bani
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b08776

Spectroscopic properties of anion radicals studied using pulse radiolysis
journal, August 2006

  • Samant, Vaishali; Singh, Ajay K.; Mukherjee, Tulsi
  • Research on Chemical Intermediates, Vol. 32, Issue 8
  • DOI: 10.1163/156856706778606499

Mechanism of the Formation of a Mn-Based CO 2 Reduction Catalyst Revealed by Pulse Radiolysis with Time-Resolved Infrared Detection
journal, April 2014

  • Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.
  • Journal of the American Chemical Society, Vol. 136, Issue 15
  • DOI: 10.1021/ja501051s

Infrared spectra of the CO2− and C2O4− anions isolated in solid argon
journal, February 1999

  • Zhou, Mingfei; Andrews, Lester
  • The Journal of Chemical Physics, Vol. 110, Issue 5
  • DOI: 10.1063/1.477947

Yield of Ions and Excited States Produced in the Radiolysis of Polar Organic Liquids
journal, September 1970


Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility
journal, April 2015

  • Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.
  • Review of Scientific Instruments, Vol. 86, Issue 4
  • DOI: 10.1063/1.4918728

Spin trapping of cyanoalkyl radicals in the liquid phase .gamma. radiolysis of nitriles
journal, October 1976

  • Mao, S. W.; Kevan, Larry
  • The Journal of Physical Chemistry, Vol. 80, Issue 21
  • DOI: 10.1021/j100562a005

Radiolytic studies of ruthenium oxo-acetato trinuclear complexes in acetonitrile
journal, July 1993

  • Imamura, Taira; Sumiyoshi, Takashi; Takahashi, Kenta
  • The Journal of Physical Chemistry, Vol. 97, Issue 29
  • DOI: 10.1021/j100131a058

Pulse radiolysis of sodium formate aqueous solution up to 400°C: Absorption spectra, kinetics and yield of carboxyl radical CO2−
journal, October 2008


Nature of Excess Electrons in Polar Fluids: Anion-Solvated Electron Equilibrium and Polarized Hole-Burning in Liquid Acetonitrile
journal, April 2013

  • Doan, Stephanie C.; Schwartz, Benjamin J.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 9
  • DOI: 10.1021/jz400621m

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.