skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability

Abstract

To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h-1 at 60 °C. A constant rate (TOF>35 000 h-1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Research Inst. of Energy Frontier. Dept. of Energy and Environment
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Japan Science and Technology Agency (JST)
OSTI Identifier:
1430848
Alternate Identifier(s):
OSTI ID: 1429932
Report Number(s):
BNL-203368-2018-JAAM
Journal ID: ISSN 0947-6539
Grant/Contract Number:  
SC0012704; JPMJCR1342
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 24; Journal Issue: 69; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 08 HYDROGEN; dehydrogenation; formic acid; hydrogen storage

Citation Formats

Kanega, Ryoichi, Onishi, Naoya, Wang, Lin, Murata, Kazuhisa, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability. United States: N. p., 2018. Web. doi:10.1002/chem.201800428.
Kanega, Ryoichi, Onishi, Naoya, Wang, Lin, Murata, Kazuhisa, Muckerman, James T., Fujita, Etsuko, & Himeda, Yuichiro. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability. United States. doi:10.1002/chem.201800428.
Kanega, Ryoichi, Onishi, Naoya, Wang, Lin, Murata, Kazuhisa, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Thu . "Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability". United States. doi:10.1002/chem.201800428. https://www.osti.gov/servlets/purl/1430848.
@article{osti_1430848,
title = {Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability},
author = {Kanega, Ryoichi and Onishi, Naoya and Wang, Lin and Murata, Kazuhisa and Muckerman, James T. and Fujita, Etsuko and Himeda, Yuichiro},
abstractNote = {To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h-1 at 60 °C. A constant rate (TOF>35 000 h-1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.},
doi = {10.1002/chem.201800428},
journal = {Chemistry - A European Journal},
number = 69,
volume = 24,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

CO 2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands
journal, August 2017


Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate
journal, August 2015

  • Horváth, Henrietta; Papp, Gábor; Szabolcsi, Roland
  • ChemSusChem, Vol. 8, Issue 18
  • DOI: 10.1002/cssc.201500808

Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage
journal, January 2015

  • Zhu, Qi-Long; Xu, Qiang
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03690E

Selective Formic Acid Dehydrogenation Catalyzed by Fe-PNP Pincer Complexes Based on the 2,6-Diaminopyridine Scaffold
journal, September 2016


Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201507458

Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H 2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution
journal, October 2008

  • Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
  • ChemSusChem, Vol. 1, Issue 10
  • DOI: 10.1002/cssc.200800147

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Simple Continuous High-Pressure Hydrogen Production and Separation System from Formic Acid under Mild Temperatures
journal, December 2015


Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands
journal, January 2016

  • Onishi, Naoya; Ertem, Mehmed Z.; Xu, Shaoan
  • Catalysis Science & Technology, Vol. 6, Issue 4
  • DOI: 10.1039/C5CY01865J

CO 2 as a hydrogen vector – transition metal diamine catalysts for selective HCOOH dehydrogenation
journal, January 2017

  • Fink, Cornel; Laurenczy, Gábor
  • Dalton Transactions, Vol. 46, Issue 5
  • DOI: 10.1039/C6DT04638J

Use of carbon dioxide in energy storage
journal, September 1978

  • Williams, Richard; Crandall, Richard S.; Bloom, Allen
  • Applied Physics Letters, Vol. 33, Issue 5
  • DOI: 10.1063/1.90403

Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017


Hydrogen Storage in Formic Acid: A Comparison of Process Options
journal, November 2017


Kontrollierte Wasserstofferzeugung aus Ameisensäure-Amin-Addukten bei Raumtemperatur und direkte Nutzung in H2/O2-Brennstoffzellen
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie, Vol. 120, Issue 21
  • DOI: 10.1002/ange.200705972

Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N ′-Diimine Ligand
journal, December 2016


Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid
journal, August 2016

  • Iguchi, Masayuki; Himeda, Yuichiro; Manaka, Yuichi
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600697

Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts
journal, November 2016

  • Montandon-Clerc, Mickael; Dalebrook, Andrew F.; Laurenczy, Gábor
  • Journal of Catalysis, Vol. 343
  • DOI: 10.1016/j.jcat.2015.11.012

Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie, Vol. 128, Issue 26
  • DOI: 10.1002/ange.201507458

    Works referencing / citing this record:

    Iridium–NHC-based catalyst for ambient pressure storage and low temperature release of H 2 via the CO 2 /HCO 2 H couple
    journal, January 2018

    • Semwal, Shrivats; Kumar, Abhishek; Choudhury, Joyanta
    • Catalysis Science & Technology, Vol. 8, Issue 23
    • DOI: 10.1039/c8cy02069h

    Iridium–NHC-based catalyst for ambient pressure storage and low temperature release of H 2 via the CO 2 /HCO 2 H couple
    journal, January 2018

    • Semwal, Shrivats; Kumar, Abhishek; Choudhury, Joyanta
    • Catalysis Science & Technology, Vol. 8, Issue 23
    • DOI: 10.1039/c8cy02069h