skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aerosols at the poles: an AeroCom Phase II multi-model evaluation

Abstract

Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north ofmore » 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m -2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the AeroCom models (GISS modelE) to investigate how regional emissions of BC and sulfate and the lifetime of BC influence the Arctic and Antarctic AOD. A doubling of emissions in eastern Asia results in a 33 % increase in Arctic AOD of BC. A doubling of the BC lifetime results in a 39 % increase in Arctic AOD of BC. However, these radical changes still fall within the AeroCom model range.« less

Authors:
 [1];  [2]; ORCiD logo [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [10];  [11];  [11]; ORCiD logo [12];  [10];  [13];  [14];  [2];  [15];  [16] more »; ORCiD logo [11];  [11]; ORCiD logo [2]; ORCiD logo [17];  [18]; ORCiD logo [4];  [14];  [19];  [20] « less
  1. Center for International Climate and Environmental Research – Oslo (CICERO) (Norway); NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States). Columbia Earth Inst.
  2. Center for International Climate and Environmental Research – Oslo (CICERO) (Norway)
  3. Inst. Pierre Simon Laplace, Gif-sur-Yvette (France). Climate and Environment Sciences Lab. (LSCE)
  4. NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States). Columbia Earth Inst.
  5. Univ. of Reading (United Kingdom). Dept. of Meteorology
  6. Center for International Climate and Environmental Research – Oslo (CICERO) (Norway); Univ. of Oslo (Norway). Dept. of Geosciences
  7. Univ. of Maryland, College Park, MD (United States). Earth System Science Interdisciplinary Center
  8. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  9. European Commission, Ispra (Italy). Directorate for Sustainable Resources. Joint Research Centre
  10. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  11. Norwegian Meteorological Inst., Oslo (Norway)
  12. National Center for Atmospheric Research, Boulder, CO (United States)
  13. Univ. of Wyoming, Laramie, WY (United States). Dept. of Atmospheric Science
  14. State Univ. of New York at Albany, NY (United States). Atmospheric Sciences Research Center
  15. Royal Netherlands Meteorological Inst., De Bilt (Netherlands)
  16. Univ. of Michigan, Ann Arbor, MI (United States). Climate and Space Sciences and Engineering
  17. Univ. of Oxford (United Kingdom). Dept. of Physics
  18. Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
  19. Max Planck Inst. for Meteorology, Hamburg (Germany); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  20. China Meteorological Administration, Beijing (China). Lab. for Climate Studies. National Climate Center
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Michigan, Ann Arbor, MI (United States); NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States); Center for International Climate and Environmental Research – Oslo (CICERO) (Norway); Norwegian Meteorological Inst., Oslo (Norway); Kyushu Univ., Fukuoka (Japan); Univ. of Oxford (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); National Aeronautic and Space Administration (NASA); National Science Foundation (NSF); Research Council of Norway (RCN); European Research Council (ERC); Japan Society for the Promotion of Science (JSPS); Natural Environment Research Council (NERC) (United Kingdom)
OSTI Identifier:
1430718
Report Number(s):
PNNL-SA-122987
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC05-76RL01830; FG02-01ER63248; SC0008486; NNX17AG35G; AGS-0946739; AGS-1550816; ARC-1023387; ns2345k; nn2345k; 207711/E10; 240921; 240372; 229771; FP7-280025; 608695; JP15H01728; JP15K12190; NE/J022624/1
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 17; Journal Issue: 19; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Sand, Maria, Samset, Bjorn H., Balkanski, Yves, Bauer, Susanne, Bellouin, Nicolas, Berntsen, Terje K., Bian, Huisheng, Chin, Mian, Diehl, Thomas, Easter, Richard, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Lamarque, Jean-Francois, Lin, Guangxing, Liu, Xiaohong, Luo, Gan, Myhre, Gunnar, Noije, Twan van, Penner, Joyce E., Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Stier, Philip, Takemura, Toshihiko, Tsigaridis, Kostas, Yu, Fangqun, Zhang, Kai, and Zhang, Hua. Aerosols at the poles: an AeroCom Phase II multi-model evaluation. United States: N. p., 2017. Web. doi:10.5194/ACP-17-12197-2017.
Sand, Maria, Samset, Bjorn H., Balkanski, Yves, Bauer, Susanne, Bellouin, Nicolas, Berntsen, Terje K., Bian, Huisheng, Chin, Mian, Diehl, Thomas, Easter, Richard, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Lamarque, Jean-Francois, Lin, Guangxing, Liu, Xiaohong, Luo, Gan, Myhre, Gunnar, Noije, Twan van, Penner, Joyce E., Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Stier, Philip, Takemura, Toshihiko, Tsigaridis, Kostas, Yu, Fangqun, Zhang, Kai, & Zhang, Hua. Aerosols at the poles: an AeroCom Phase II multi-model evaluation. United States. doi:10.5194/ACP-17-12197-2017.
Sand, Maria, Samset, Bjorn H., Balkanski, Yves, Bauer, Susanne, Bellouin, Nicolas, Berntsen, Terje K., Bian, Huisheng, Chin, Mian, Diehl, Thomas, Easter, Richard, Ghan, Steven J., Iversen, Trond, Kirkevag, Alf, Lamarque, Jean-Francois, Lin, Guangxing, Liu, Xiaohong, Luo, Gan, Myhre, Gunnar, Noije, Twan van, Penner, Joyce E., Schulz, Michael, Seland, Oyvind, Skeie, Ragnhild B., Stier, Philip, Takemura, Toshihiko, Tsigaridis, Kostas, Yu, Fangqun, Zhang, Kai, and Zhang, Hua. Fri . "Aerosols at the poles: an AeroCom Phase II multi-model evaluation". United States. doi:10.5194/ACP-17-12197-2017. https://www.osti.gov/servlets/purl/1430718.
@article{osti_1430718,
title = {Aerosols at the poles: an AeroCom Phase II multi-model evaluation},
author = {Sand, Maria and Samset, Bjorn H. and Balkanski, Yves and Bauer, Susanne and Bellouin, Nicolas and Berntsen, Terje K. and Bian, Huisheng and Chin, Mian and Diehl, Thomas and Easter, Richard and Ghan, Steven J. and Iversen, Trond and Kirkevag, Alf and Lamarque, Jean-Francois and Lin, Guangxing and Liu, Xiaohong and Luo, Gan and Myhre, Gunnar and Noije, Twan van and Penner, Joyce E. and Schulz, Michael and Seland, Oyvind and Skeie, Ragnhild B. and Stier, Philip and Takemura, Toshihiko and Tsigaridis, Kostas and Yu, Fangqun and Zhang, Kai and Zhang, Hua},
abstractNote = {Atmospheric aerosols from anthropogenic and natural sources reach the polar regions through long-range transport and affect the local radiation balance. Such transport is, however, poorly constrained in present-day global climate models, and few multi-model evaluations of polar anthropogenic aerosol radiative forcing exist. Here we compare the aerosol optical depth (AOD) at 550 nm from simulations with 16 global aerosol models from the AeroCom Phase II model intercomparison project with available observations at both poles. We show that the annual mean multi-model median is representative of the observations in Arctic, but that the intermodel spread is large. We also document the geographical distribution and seasonal cycle of the AOD for the individual aerosol species: black carbon (BC) from fossil fuel and biomass burning, sulfate, organic aerosols (OAs), dust, and sea-salt. For a subset of models that represent nitrate and secondary organic aerosols (SOAs), we document the role of these aerosols at high latitudes. The seasonal dependence of natural and anthropogenic aerosols differs with natural aerosols peaking in winter (sea-salt) and spring (dust), whereas AOD from anthropogenic aerosols peaks in late spring and summer. The models produce a median annual mean AOD of 0.07 in the Arctic (defined here as north of 60° N). The models also predict a noteworthy aerosol transport to the Antarctic (south of 70° S) with a resulting AOD varying between 0.01 and 0.02. The models have estimated the shortwave anthropogenic radiative forcing contributions to the direct aerosol effect (DAE) associated with BC and OA from fossil fuel and biofuel (FF), sulfate, SOAs, nitrate, and biomass burning from BC and OA emissions combined. The Arctic modelled annual mean DAE is slightly negative (-0.12 W m-2), dominated by a positive BC FF DAE in spring and a negative sulfate DAE in summer. The Antarctic DAE is governed by BC FF. We perform sensitivity experiments with one of the AeroCom models (GISS modelE) to investigate how regional emissions of BC and sulfate and the lifetime of BC influence the Arctic and Antarctic AOD. A doubling of emissions in eastern Asia results in a 33 % increase in Arctic AOD of BC. A doubling of the BC lifetime results in a 39 % increase in Arctic AOD of BC. However, these radical changes still fall within the AeroCom model range.},
doi = {10.5194/ACP-17-12197-2017},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 19,
volume = 17,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions
journal, January 2013

  • Stohl, A.; Klimont, Z.; Eckhardt, S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8833-2013

The complex response of Arctic aerosol to sea-ice retreat
journal, January 2014

  • Browse, J.; Carslaw, K. S.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 14
  • DOI: 10.5194/acp-14-7543-2014

Will a perfect model agree with perfect observations? The impact of spatial sampling
journal, January 2016

  • Schutgens, Nick A. J.; Gryspeerdt, Edward; Weigum, Natalie
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 10
  • DOI: 10.5194/acp-16-6335-2016

M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models: AEROSOL MICROPHYSICS MODULE
journal, November 2004

  • Vignati, Elisabetta; Wilson, Julian; Stier, Philip
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D22
  • DOI: 10.1029/2003JD004485

Radiative forcing and climate response
journal, March 1997

  • Hansen, J.; Sato, M.; Ruedy, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D6
  • DOI: 10.1029/96JD03436

The Summer Cyclone Maximum over the Central Arctic Ocean
journal, March 2008


A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009
journal, January 2010

  • Stone, R. S.; Herber, A.; Vitale, V.
  • Journal of Geophysical Research, Vol. 115, Issue D13
  • DOI: 10.1029/2009JD013605

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study
journal, January 2013

  • Stier, P.; Schutgens, N. A. J.; Bellouin, N.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3245-2013

The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
journal, January 2013

  • Winker, D. M.; Tackett, J. L.; Getzewich, B. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3345-2013

Springtime warming and reduced snow cover from carbonaceous particles
journal, January 2009

  • Flanner, M. G.; Zender, C. S.; Hess, P. G.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 7
  • DOI: 10.5194/acp-9-2481-2009

Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions
journal, January 2011

  • Bourgeois, Quentin; Bey, Isabelle
  • Journal of Geophysical Research, Vol. 116, Issue D8
  • DOI: 10.1029/2010JD015096

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
journal, January 2013

  • Myhre, G.; Samset, B. H.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1853-2013

Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides
journal, January 2012

  • Lin, G.; Penner, J. E.; Sillman, S.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 10
  • DOI: 10.5194/acp-12-4743-2012

Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM
journal, June 2016

  • Koffi, Brigitte; Schulz, Michael; Bréon, François-Marie
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 12
  • DOI: 10.1002/2015JD024639

The AeroCom evaluation and intercomparison of organic aerosol in global models
journal, January 2014

  • Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10845-2014

Transport of black carbon to polar regions: Sensitivity and forcing by black carbon: TRANSPORT AND FORCING OF BLACK CARBON
journal, November 2012

  • Zhou, Cheng; Penner, Joyce E.; Flanner, Mark G.
  • Geophysical Research Letters, Vol. 39, Issue 22
  • DOI: 10.1029/2012GL053388

An AeroCom assessment of black carbon in Arctic snow and sea ice
journal, January 2014

  • Jiao, C.; Flanner, M. G.; Balkanski, Y.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2399-2014

The importance of temporal collocation for the evaluation of aerosol models with observations
journal, January 2016

  • Schutgens, N. A. J.; Partridge, D. G.; Stier, P.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-1065-2016

Climate Modification by Atmospheric Aerosols
journal, June 1967


CALIOP and AERONET aerosol optical depth comparisons: One size fits none: CALIOP AND AERONET AOD: ONE SIZE FITS NONE
journal, May 2013

  • Omar, A. H.; Winker, D. M.; Tackett, J. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50330

How shorter black carbon lifetime alters its climate effect
journal, September 2014

  • Hodnebrog, Øivind; Myhre, Gunnar; Samset, Bjørn H.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6065

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O'Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 19
  • DOI: 10.5194/acp-12-8911-2012

Short-lived climate forcers from current shipping and petroleum activities in the Arctic
journal, January 2012

  • Ødemark, K.; Dalsøren, S. B.; Samset, B. H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-1979-2012

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements
journal, January 2009


Recent Antarctic ice mass loss from radar interferometry and regional climate modelling
journal, January 2008

  • Rignot, Eric; Bamber, Jonathan L.; van den Broeke, Michiel R.
  • Nature Geoscience, Vol. 1, Issue 2
  • DOI: 10.1038/ngeo102

Aerosol optical depth over the Arctic: a comparison of ECHAM-HAM and TM5 with ground-based, satellite and reanalysis data
journal, January 2012

  • von Hardenberg, J.; Vozella, L.; Tomasi, C.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 15
  • DOI: 10.5194/acp-12-6953-2012

AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization
journal, October 1998


Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model
journal, January 2013

  • Wang, H.; Easter, R. C.; Rasch, P. J.
  • Geoscientific Model Development, Vol. 6, Issue 3
  • DOI: 10.5194/gmd-6-765-2013

Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M
journal, January 2013

  • Kirkevåg, A.; Iversen, T.; Seland, Ø.
  • Geoscientific Model Development, Vol. 6, Issue 1
  • DOI: 10.5194/gmd-6-207-2013

Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models
journal, January 2016

  • Kristiansen, N. I.; Stohl, A.; Olivié, D. J. L.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-3525-2016

Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
journal, January 2006

  • Schulz, M.; Textor, C.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5225-2006

Effects of varying aerosol regimes on low-level Arctic stratus: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, September 2004

  • Garrett, T. J.; Zhao, C.; Dong, X.
  • Geophysical Research Letters, Vol. 31, Issue 17
  • DOI: 10.1029/2004GL019928

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

The aerosol-climate model ECHAM5-HAM
journal, January 2005

  • Stier, P.; Feichter, J.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1125-2005

MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models
journal, January 2008

  • Bauer, S. E.; Wright, D. L.; Koch, D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 20
  • DOI: 10.5194/acp-8-6003-2008

Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations: REMOTE SENSING OF AEROSOLS IN THE ARCTIC
journal, July 2014

  • Glantz, Paul; Bourassa, Adam; Herber, Andreas
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 13
  • DOI: 10.1002/2013JD021279

The MODIS Aerosol Algorithm, Products, and Validation
journal, April 2005

  • Remer, L. A.; Kaufman, Y. J.; Tanré, D.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 4
  • DOI: 10.1175/JAS3385.1

Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008
journal, January 2009

  • Quinn, P. K.; Bates, T. S.; Schulz, K.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 22
  • DOI: 10.5194/acp-9-8883-2009

Amplification of Arctic warming by past air pollution reductions in Europe
journal, March 2016

  • Acosta Navarro, J. C.; Varma, V.; Riipinen, I.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2673

CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model
journal, January 2012

  • Lamarque, J. -F.; Emmons, L. K.; Hess, P. G.
  • Geoscientific Model Development, Vol. 5, Issue 2
  • DOI: 10.5194/gmd-5-369-2012

Analysis and quantification of the diversities of aerosol life cycles within AeroCom
journal, January 2006

  • Textor, C.; Schulz, M.; Guibert, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1777-2006

Aerosol remote sensing in polar regions
journal, January 2015


Coupled Aerosol-Chemistry–Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses
journal, June 2011

  • Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony
  • Journal of Climate, Vol. 24, Issue 11
  • DOI: 10.1175/2011JCLI3582.1

Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations
journal, January 2014


Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100
journal, July 2012


Soot climate forcing via snow and ice albedos
journal, December 2003

  • Hansen, J.; Nazarenko, L.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 2
  • DOI: 10.1073/pnas.2237157100

Climate response to regional radiative forcing during the twentieth century
journal, March 2009

  • Shindell, Drew; Faluvegi, Greg
  • Nature Geoscience, Vol. 2, Issue 4
  • DOI: 10.1038/ngeo473

Black carbon vertical profiles strongly affect its radiative forcing uncertainty
journal, January 2013

  • Samset, B. H.; Myhre, G.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2423-2013

The Influence of Pollution on the Shortwave Albedo of Clouds
journal, July 1977


Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity
journal, January 2009

  • Bian, H.; Chin, M.; Rodriguez, J. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 7
  • DOI: 10.5194/acp-9-2375-2009

Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms
journal, November 2009

  • Winker, David M.; Vaughan, Mark A.; Omar, Ali
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 11
  • DOI: 10.1175/2009JTECHA1281.1

Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model
journal, January 2016


Soot in the Arctic snowpack: a cause for perturbations in radiative transfer
journal, January 1985


Tracing biomass burning aerosol from South America to Troll Research Station, Antarctica
journal, January 2009

  • Fiebig, M.; Lunder, C. R.; Stohl, A.
  • Geophysical Research Letters, Vol. 36, Issue 14
  • DOI: 10.1029/2009GL038531

Offsetting effects of aerosols on Arctic and global climate in the late 20th century
journal, January 2014

  • Yang, Q.; Bitz, C. M.; Doherty, S. J.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 8
  • DOI: 10.5194/acp-14-3969-2014

Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment
journal, January 2005


Evaluation of factors controlling long-range transport of black carbon to the Arctic
journal, January 2011

  • Liu, Junfeng; Fan, Songmiao; Horowitz, Larry W.
  • Journal of Geophysical Research, Vol. 116, Issue D4
  • DOI: 10.1029/2010JD015145

The central role of diminishing sea ice in recent Arctic temperature amplification
journal, April 2010


Evaluation of black carbon estimations in global aerosol models
journal, January 2009


Black carbon in the atmosphere and snow, from pre-industrial times until present
journal, January 2011

  • Skeie, R. B.; Berntsen, T.; Myhre, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 14
  • DOI: 10.5194/acp-11-6809-2011

Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study
journal, January 2014

  • Ma, P. -L.; Rasch, P. J.; Fast, J. D.
  • Geoscientific Model Development, Vol. 7, Issue 3
  • DOI: 10.5194/gmd-7-755-2014

Characteristics of atmospheric transport into the Antarctic troposphere
journal, January 2010

  • Stohl, A.; Sodemann, H.
  • Journal of Geophysical Research, Vol. 115, Issue D2
  • DOI: 10.1029/2009JD012536

Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data
journal, January 2014

  • Rogers, R. R.; Vaughan, M. A.; Hostetler, C. A.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 12
  • DOI: 10.5194/amt-7-4317-2014

Arctic air pollution and large scale atmospheric flows
journal, January 1985


Characteristics of atmospheric transport into the Arctic troposphere
journal, January 2006


Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations
journal, January 2011

  • Jaeglé, L.; Quinn, P. K.; Bates, T. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3137-2011

The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget
journal, March 1995

  • Haywood, J. M.; Shine, K. P.
  • Geophysical Research Letters, Vol. 22, Issue 5
  • DOI: 10.1029/95GL00075

Comparison of Aerosol at Four Baseline Atmospheric Monitoring Stations
journal, May 1980


Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model
journal, January 2005


Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data
journal, May 2014

  • Kim, Dongchul; Chin, Mian; Yu, Hongbin
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 10
  • DOI: 10.1002/2013JD021099

Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate
journal, January 2011

  • Bellouin, Nicolas; Rae, Jamie; Jones, Andy
  • Journal of Geophysical Research, Vol. 116, Issue D20
  • DOI: 10.1029/2011JD016074

Chemical components of lower tropospheric aerosols in the high arctic: Six years of observations
journal, October 1990

  • Barrie, L. A.; Barrie, M. J.
  • Journal of Atmospheric Chemistry, Vol. 11, Issue 3
  • DOI: 10.1007/BF00118349

Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013)
journal, January 2016

  • Evangeliou, N.; Balkanski, Y.; Hao, W. M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 12
  • DOI: 10.5194/acp-16-7587-2016

Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output
journal, January 2010

  • Hirdman, D.; Sodemann, H.; Eckhardt, S.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-669-2010

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance
journal, July 2009

  • Liu, Zhaoyan; Vaughan, Mark; Winker, David
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 7
  • DOI: 10.1175/2009JTECHA1229.1

A multi-model assessment of pollution transport to the Arctic
journal, January 2008

  • Shindell, D. T.; Chin, M.; Dentener, F.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 17
  • DOI: 10.5194/acp-8-5353-2008

Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea
journal, December 2001

  • Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2000JD900747

Climate response to externally mixed black carbon as a function of altitude: BC climate response vs altitude
journal, April 2015

  • Samset, B. H.; Myhre, G.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 7
  • DOI: 10.1002/2014JD022849

Major ions and radionuclides in aerosol particles from the South Pole during ISCAT-2000
journal, October 2004


Aerosols in polar regions: A historical overview based on optical depth and in situ observations
journal, January 2007

  • Tomasi, C.; Vitale, V.; Lupi, A.
  • Journal of Geophysical Research, Vol. 112, Issue D16
  • DOI: 10.1029/2007JD008432

What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II
journal, January 2016

  • Kipling, Zak; Stier, Philip; Johnson, Colin E.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 4
  • DOI: 10.5194/acp-16-2221-2016

Ice-free glacial northern Asia due to dust deposition on snow
journal, June 2006


A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements
journal, June 2014


    Works referencing / citing this record:

    Arctic Amplification Response to Individual Climate Drivers
    journal, July 2019

    • Stjern, Camilla Weum; Lund, Marianne Tronstad; Samset, Bjørn Hallvard
    • Journal of Geophysical Research: Atmospheres
    • DOI: 10.1029/2018jd029726

    The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic
    journal, January 2019

    • Schacht, Jacob; Heinold, Bernd; Quaas, Johannes
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
    • DOI: 10.5194/acp-19-11159-2019

    Arctic Amplification Response to Individual Climate Drivers
    journal, July 2019

    • Stjern, Camilla Weum; Lund, Marianne Tronstad; Samset, Bjørn Hallvard
    • Journal of Geophysical Research: Atmospheres
    • DOI: 10.1029/2018jd029726

    The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic
    journal, January 2019

    • Schacht, Jacob; Heinold, Bernd; Quaas, Johannes
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
    • DOI: 10.5194/acp-19-11159-2019