DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

Abstract

Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiagvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects ofmore » anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5]
  1. National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES)
  2. National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.
  3. Univ. of Oklahoma, Norman, OK (United States)
  4. Univ. of Illinois, Urbana-Champaign, IL (United States); National Center for Atmospheric Research, Boulder, CO (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER). Earth and Environmental Systems Science Division
OSTI Identifier:
1430527
Alternate Identifier(s):
OSTI ID: 1673424
Report Number(s):
PNNL-SA-125510
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
ARC 1203902; AC05-76RL08130; SC0013306
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 17; Journal Issue: 23; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Maahn, Maximilian, de Boer, Gijs, Creamean, Jessie M., Feingold, Graham, McFarquhar, Greg M., Wu, Wei, and Mei, Fan. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. United States: N. p., 2017. Web. doi:10.5194/ACP-17-14709-2017.
Maahn, Maximilian, de Boer, Gijs, Creamean, Jessie M., Feingold, Graham, McFarquhar, Greg M., Wu, Wei, & Mei, Fan. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. United States. https://doi.org/10.5194/ACP-17-14709-2017
Maahn, Maximilian, de Boer, Gijs, Creamean, Jessie M., Feingold, Graham, McFarquhar, Greg M., Wu, Wei, and Mei, Fan. Mon . "The observed influence of local anthropogenic pollution on northern Alaskan cloud properties". United States. https://doi.org/10.5194/ACP-17-14709-2017. https://www.osti.gov/servlets/purl/1430527.
@article{osti_1430527,
title = {The observed influence of local anthropogenic pollution on northern Alaskan cloud properties},
author = {Maahn, Maximilian and de Boer, Gijs and Creamean, Jessie M. and Feingold, Graham and McFarquhar, Greg M. and Wu, Wei and Mei, Fan},
abstractNote = {Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiagvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment},
doi = {10.5194/ACP-17-14709-2017},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 23,
volume = 17,
place = {United States},
year = {Mon Dec 11 00:00:00 EST 2017},
month = {Mon Dec 11 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Overview of all flights of the ACME-V campaign. Colour shows altitude above mean sea level. The dashed circles indicate 90 km radii around the sites (black crosses), the green dots indicate active oil wells (data obtained from http://doa.alaska.gov/ogc/ publicdb.html in March 2017). The grey inset shows the locationmore » of the region in Alaska and the five assumed sources for forest fire emissions (stars) based on MODIS thermal anomaly observations.« less

Save / Share:

Works referenced in this record:

Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions
journal, January 2013

  • Stohl, A.; Klimont, Z.; Eckhardt, S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8833-2013

Remote sensing the susceptibility of cloud albedo to changes in drop concentration
journal, June 1994


The DOE ARM Aerial Facility
journal, May 2014

  • Schmid, B.; Tomlinson, J. M.; Hubbe, J. M.
  • Bulletin of the American Meteorological Society, Vol. 95, Issue 5
  • DOI: 10.1175/BAMS-D-13-00040.1

Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC
journal, January 2010

  • Lance, S.; Brock, C. A.; Rogers, D.
  • Atmospheric Measurement Techniques, Vol. 3, Issue 6
  • DOI: 10.5194/amt-3-1683-2010

An Enhanced Contextual Fire Detection Algorithm for MODIS
journal, October 2003

  • Giglio, Louis; Descloitres, Jacques; Justice, Christopher O.
  • Remote Sensing of Environment, Vol. 87, Issue 2-3
  • DOI: 10.1016/S0034-4257(03)00184-6

The relationship between cloud droplet number concentrations and anthropogenic pollution: Observations and climatic implications
journal, January 1992

  • Leaitch, W. R.; Isaac, G. A.; Strapp, J. W.
  • Journal of Geophysical Research, Vol. 97, Issue D2
  • DOI: 10.1029/91JD02739

A comparison of climate feedbacks in general circulation models
journal, March 2003


Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties
journal, December 2013

  • Lack, Daniel A.; Moosmüller, Hans; McMeeking, Gavin R.
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 1
  • DOI: 10.1007/s00216-013-7402-3

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, August 2012

  • Jackson, Robert C.; McFarquhar, Greg M.; Korolev, Alexei V.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017668

Assessment of Undiscovered Oil and Gas in the Arctic
journal, May 2009


Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect
journal, November 2016

  • Croft, B.; Wentworth, G. R.; Martin, R. V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13444

A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska: CHEMICAL AND OPTICAL PROPERTIES AT BARROW, ALASKA
journal, June 2002

  • Quinn, P. K.; Miller, T. L.; Bates, T. S.
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D11
  • DOI: 10.1029/2001JD001248

An assessment of aerosol‐cloud interactions in marine stratus clouds based on surface remote sensing
journal, January 2009

  • McComiskey, Allison; Feingold, Graham; Frisch, A. Shelby
  • Journal of Geophysical Research, Vol. 114, Issue D9
  • DOI: 10.1029/2008JD011006

Aged boreal biomass-burning aerosol size distributions from BORTAS 2011
journal, January 2015

  • Sakamoto, K. M.; Allan, J. D.; Coe, H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 4
  • DOI: 10.5194/acp-15-1633-2015

Indirect and Semi-direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds
journal, February 2011

  • McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 2
  • DOI: 10.1175/2010BAMS2935.1

Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The ACCESS Aircraft Campaign Experiment
journal, March 2015

  • Roiger, A.; Thomas, J. -L.; Schlager, H.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 3
  • DOI: 10.1175/BAMS-D-13-00169.1

Short-lived climate forcers from current shipping and petroleum activities in the Arctic
journal, January 2012

  • Ødemark, K.; Dalsøren, S. B.; Samset, B. H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-1979-2012

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Atmospheric aerosols and global climate
journal, January 1980


On the Impacts of Different Definitions of Maximum Dimension for Nonspherical Particles Recorded by 2D Imaging Probes
journal, May 2016

  • Wu, Wei; McFarquhar, Greg M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 33, Issue 5
  • DOI: 10.1175/JTECH-D-15-0177.1

Arctic Air Pollution: Origins and Impacts
journal, March 2007


Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic
journal, January 2016

  • Coopman, Quentin; Garrett, Timothy J.; Riedi, Jérôme
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 7
  • DOI: 10.5194/acp-16-4661-2016

Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution
journal, January 2013

  • Cai, Y.; Snider, J. R.; Wechsler, P.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 9
  • DOI: 10.5194/amt-6-2349-2013

Measurement of the nucleation of atmospheric aerosol particles
journal, August 2012

  • Kulmala, Markku; Petäjä, Tuukka; Nieminen, Tuomo
  • Nature Protocols, Vol. 7, Issue 9
  • DOI: 10.1038/nprot.2012.091

Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic
journal, January 2016

  • Zamora, L. M.; Kahn, R. A.; Cubison, M. J.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-715-2016

The Arctic shifts to a new normal
journal, October 2013

  • Jeffries, Martin O.; Overland, James E.; Perovich, Donald K.
  • Physics Today, Vol. 66, Issue 10
  • DOI: 10.1063/PT.3.2147

Future emissions from shipping and petroleum activities in the Arctic
journal, January 2011

  • Peters, G. P.; Nilssen, T. B.; Lindholt, L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 11
  • DOI: 10.5194/acp-11-5305-2011

Effects of varying aerosol regimes on low-level Arctic stratus: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, September 2004

  • Garrett, T. J.; Zhao, C.; Dong, X.
  • Geophysical Research Letters, Vol. 31, Issue 17
  • DOI: 10.1029/2004GL019928

ARM Aircraft Measurements
journal, April 2016


Particle counting efficiencies of new TSI condensation particle counters
journal, June 2007


Effect of Prudhoe Bay emissions on atmospheric aerosol growth events observed in Utqiaġvik (Barrow), Alaska
journal, March 2017


Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008
journal, January 2009

  • Quinn, P. K.; Bates, T. S.; Schulz, K.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 22
  • DOI: 10.5194/acp-9-8883-2009

The scale problem in quantifying aerosol indirect effects
journal, January 2012


NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System
journal, December 2015

  • Stein, A. F.; Draxler, R. R.; Rolph, G. D.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 12
  • DOI: 10.1175/BAMS-D-14-00110.1

Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration
journal, January 2011

  • Gysel, M.; Laborde, M.; Olfert, J. S.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 12
  • DOI: 10.5194/amt-4-2851-2011

On Operation of the Ultra-Fine Water-Based CPC TSI 3786 and Comparison with Other TSI Models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007)
journal, January 2008


Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing
journal, July 2008

  • Zhang, R.; Khalizov, A. F.; Pagels, J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 30
  • DOI: 10.1073/pnas.0804860105

Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes
journal, April 2006


Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds
journal, January 2011

  • Lance, S.; Shupe, M. D.; Feingold, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-8003-2011

The Kolmogorov-Smirnov Test for Goodness of Fit
journal, March 1951

  • Massey, Frank J.
  • Journal of the American Statistical Association, Vol. 46, Issue 253
  • DOI: 10.2307/2280095

Cloud–Aerosol Interactions from the Micro to the Cloud Scale
book, January 2009

  • Feingold, Graham; Siebert, Holger
  • Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation
  • DOI: 10.7551/mitpress/9780262012874.003.0014

Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008
journal, January 2011

  • Kondo, Y.; Matsui, H.; Moteki, N.
  • Journal of Geophysical Research, Vol. 116, Issue D8
  • DOI: 10.1029/2010JD015152

A technology-based global inventory of black and organic carbon emissions from combustion
journal, January 2004


Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach
journal, October 2001

  • Feingold, Graham; Remer, Lorraine A.; Ramaprasad, Jaya
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D19
  • DOI: 10.1029/2001JD000732

Untangling aerosol effects on clouds and precipitation in a buffered system
journal, October 2009


Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign
journal, January 2011

  • Matsui, H.; Kondo, Y.; Moteki, N.
  • Journal of Geophysical Research, Vol. 116, Issue D5
  • DOI: 10.1029/2010JD015067

Hygroscopic properties of carbon and diesel soot particles
journal, August 1997


The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High-Speed, High-Resolution Particle Imaging Probe
journal, November 2006

  • Lawson, R. Paul; O’Connor, Darren; Zmarzly, Patrick
  • Journal of Atmospheric and Oceanic Technology, Vol. 23, Issue 11
  • DOI: 10.1175/JTECH1927.1

Space-based evaluation of interactions between aerosols and low-level Arctic clouds during the Spring and Summer of 2008
journal, January 2011


Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols
journal, December 1999

  • Eck, T. F.; Holben, B. N.; Reid, J. S.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D24
  • DOI: 10.1029/1999JD900923

Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia
journal, January 2006

  • Rissler, J.; Vestin, A.; Swietlicki, E.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 2
  • DOI: 10.5194/acp-6-471-2006

Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering
journal, July 2015

  • Kassianov, Evgueni; Berg, Larry; Pekour, Mikhail
  • Atmosphere, Vol. 6, Issue 8
  • DOI: 10.3390/atmos6081069

Microstructures of low and middle-level clouds over the Beaufort Sea
journal, July 1998

  • Hobbs, Peter V.; Rangno, Arthur L.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 124, Issue 550
  • DOI: 10.1002/qj.49712455012

An annual cycle of Arctic surface cloud forcing at SHEBA
journal, January 2002


Aircraft observations of the origin and growth of very large snowflakes
journal, January 1993

  • Lawson, R. Paul; Stewart, Ronald E.; Strapp, J. Walter
  • Geophysical Research Letters, Vol. 20, Issue 1
  • DOI: 10.1029/92GL02917

Microphysics of Clouds and Precipitation
book, June 2010


Evaluation of a Heated-Inlet for Calibration of the SP2
journal, August 2013


The NCEP/NCAR 40-Year Reanalysis Project
journal, March 1996


Further Performance Tests on the CSIRO Liquid Water Probe
journal, February 1981


Icing Wind Tunnel Tests on the CSIRO Liquid Water Probe
journal, September 1985


Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008: HAZE FROM BIOMASS BURNING IN THE ARCTIC
journal, January 2009

  • Warneke, C.; Bahreini, R.; Brioude, J.
  • Geophysical Research Letters, Vol. 36, Issue 2
  • DOI: 10.1029/2008GL036194

An important contribution to springtime Arctic aerosol from biomass burning in Russia: ARCTIC AEROSOL FROM BIOMASS BURNING
journal, January 2010

  • Warneke, C.; Froyd, K. D.; Brioude, J.
  • Geophysical Research Letters, Vol. 37, Issue 1
  • DOI: 10.1029/2009GL041816

ARM: ARM-standard Meteorological Instrumentation at Surface
dataset, January 1993

  • Holdridge, Donna; Kyrouac, Jenni
  • Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US);
  • DOI: 10.5439/1025220

Campaign datasets for ARM Airborne Carbon Measurements (ARM-ACME-V)
dataset, January 2016

  • Biraud, Sebastien; Mei, Fan; Flynn, Connor
  • Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US);
  • DOI: 10.5439/1346549

Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties
journal, December 2013

  • Lack, Daniel A.; Moosmüller, Hans; McMeeking, Gavin R.
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 1
  • DOI: 10.1007/s00216-013-7402-3

Atmospheric aerosols and global climate
journal, January 1980


Remote sensing the susceptibility of cloud albedo to changes in drop concentration
journal, June 1994


Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing
journal, July 2008

  • Zhang, R.; Khalizov, A. F.; Pagels, J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 30
  • DOI: 10.1073/pnas.0804860105

Evaluation of a Heated-Inlet for Calibration of the SP2
journal, August 2013


Effects of acute tryptophan depletion on central processing of CT-targeted and discriminatory touch in humans
journal, July 2016

  • Trotter, Paula Diane; McGlone, Francis; McKie, Shane
  • European Journal of Neuroscience, Vol. 44, Issue 4
  • DOI: 10.1111/ejn.13298

Evaluation of Measurements of Particle Size and Sample Area from Optical Array Probes
journal, August 1991


Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering
journal, January 2014

  • Dolgos, Gergely; Martins, J. Vanderlei
  • Optics Express, Vol. 22, Issue 18
  • DOI: 10.1364/oe.22.021972

Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering
journal, July 2015

  • Kassianov, Evgueni; Berg, Larry; Pekour, Mikhail
  • Atmosphere, Vol. 6, Issue 8
  • DOI: 10.3390/atmos6081069

Space-based evaluation of interactions between aerosols and low-level Arctic clouds during the Spring and Summer of 2008
journal, January 2011


The scale problem in quantifying aerosol indirect effects
journal, January 2012


Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions
journal, January 2013

  • Stohl, A.; Klimont, Z.; Eckhardt, S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8833-2013

Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic
journal, January 2016

  • Coopman, Quentin; Garrett, Timothy J.; Riedi, Jérôme
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 7
  • DOI: 10.5194/acp-16-4661-2016

Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia
journal, January 2006

  • Rissler, J.; Vestin, A.; Swietlicki, E.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 2
  • DOI: 10.5194/acp-6-471-2006

Works referencing / citing this record:

A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean
journal, January 2018

  • Zamora, Lauren M.; Kahn, Ralph A.; Huebert, Klaus B.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14949-2018

Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location
journal, January 2018

  • Creamean, Jessie M.; Kirpes, Rachel M.; Pratt, Kerri A.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 24
  • DOI: 10.5194/acp-18-18023-2018

The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska
journal, January 2018

  • Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-555-2018

Organic coating on sulfate and soot particles during late summer in the Svalbard Archipelago
journal, January 2019


Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
journal, January 2019

  • Maahn, Maximilian; Hoffmann, Fabian; Shupe, Matthew D.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 6
  • DOI: 10.5194/amt-12-3151-2019

A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean
journal, January 2018

  • Zamora, Lauren M.; Kahn, Ralph A.; Huebert, Klaus B.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14949-2018

Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location
journal, January 2018

  • Creamean, Jessie M.; Kirpes, Rachel M.; Pratt, Kerri A.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 24
  • DOI: 10.5194/acp-18-18023-2018

The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska
journal, January 2018

  • Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-555-2018

Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
journal, January 2021

  • Sedlar, Joseph; Igel, Adele; Telg, Hagen
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 5
  • DOI: 10.5194/acp-21-4149-2021

Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
journal, January 2019

  • Maahn, Maximilian; Hoffmann, Fabian; Shupe, Matthew D.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 6
  • DOI: 10.5194/amt-12-3151-2019