DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases

Abstract

Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3'-OH and 5'-PO4 DNA or RNA ends. Ligases react with ATP or NAD+ and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)–adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD+-dependent DNA ligase family (Escherichia coliLigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg2+)2 structure highlights a two-metal mechanism, whereby: a ligase-bound “catalytic” Mg2+(H2O)5 coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg2+ coordination complex bridges the β and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD+•Mg2+ structure reveals a one-metal mechanism in which a ligase-bound Mg2+(H2O)5 complex lowers the lysine pKa and engages the NAD+ α phosphate, but the β phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that aremore » unique to the LigA clade. We conclude, the two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.« less

Authors:
 [1];  [1];  [1]
  1. Sloan–Kettering Inst., New York, NY (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Institutes of Health (NIH); National Cancer Institute (NCI); National Institute of General Medical Sciences; USDOE
OSTI Identifier:
1430349
Grant/Contract Number:  
GM63611; P30-CA008748; P41GM103403; P41GM103473; P41GM111244; HEI S10RR029205; AC02-06CH11357; AC02-98CH10886; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 114; Journal Issue: 10; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; metal catalysis; covalent nucleotidyltransferase; lysyl-AMP

Citation Formats

Unciuleac, Mihaela-Carmen, Goldgur, Yehuda, and Shuman, Stewart. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases. United States: N. p., 2017. Web. doi:10.1073/pnas.1619220114.
Unciuleac, Mihaela-Carmen, Goldgur, Yehuda, & Shuman, Stewart. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases. United States. https://doi.org/10.1073/pnas.1619220114
Unciuleac, Mihaela-Carmen, Goldgur, Yehuda, and Shuman, Stewart. Tue . "Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases". United States. https://doi.org/10.1073/pnas.1619220114. https://www.osti.gov/servlets/purl/1430349.
@article{osti_1430349,
title = {Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases},
author = {Unciuleac, Mihaela-Carmen and Goldgur, Yehuda and Shuman, Stewart},
abstractNote = {Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3'-OH and 5'-PO4 DNA or RNA ends. Ligases react with ATP or NAD+ and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)–adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD+-dependent DNA ligase family (Escherichia coliLigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg2+)2 structure highlights a two-metal mechanism, whereby: a ligase-bound “catalytic” Mg2+(H2O)5 coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg2+ coordination complex bridges the β and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD+•Mg2+ structure reveals a one-metal mechanism in which a ligase-bound Mg2+(H2O)5 complex lowers the lysine pKa and engages the NAD+ α phosphate, but the β phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that are unique to the LigA clade. We conclude, the two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.},
doi = {10.1073/pnas.1619220114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 10,
volume = 114,
place = {United States},
year = {Tue Feb 21 00:00:00 EST 2017},
month = {Tue Feb 21 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Formation of covalent circles of lambda DNA by E. coli extracts.
journal, January 1967

  • Gellert, M.
  • Proceedings of the National Academy of Sciences, Vol. 57, Issue 1
  • DOI: 10.1073/pnas.57.1.148

Enzymatic joining of polynucleotides, V. A DNA-adenylate intermediate in the polynucleotide-joining reaction.
journal, September 1968

  • Olivera, B. M.; Hall, Z. W.; Lehman, I. R.
  • Proceedings of the National Academy of Sciences, Vol. 61, Issue 1
  • DOI: 10.1073/pnas.61.1.237

Structure-guided Mutational Analysis of the OB, HhH, and BRCT Domains of Escherichia coli DNA Ligase
journal, May 2008

  • Wang, Li Kai; Nair, Pravin A.; Shuman, Stewart
  • Journal of Biological Chemistry, Vol. 283, Issue 34
  • DOI: 10.1074/jbc.M802945200

Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli NAD + -dependent DNA Ligase (LigA)
journal, January 2005


Kinetic Analysis of DNA Strand Joining by Chlorella Virus DNA Ligase and the Role of Nucleotidyltransferase Motif VI in Ligase Adenylylation
journal, June 2012


Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli.
journal, June 1967

  • Olivera, B. M.; Lehman, I. R.
  • Proceedings of the National Academy of Sciences, Vol. 57, Issue 6
  • DOI: 10.1073/pnas.57.6.1700

NAD + -dependent DNA Ligase Encoded by a Eukaryotic Virus
journal, July 2001

  • Sriskanda, Verl; Moyer, Richard W.; Shuman, Stewart
  • Journal of Biological Chemistry, Vol. 276, Issue 39
  • DOI: 10.1074/jbc.M105643200

The C-terminal domain of T4 RNA ligase 1 confers specificity for tRNA repair
journal, June 2007


The adenylyltransferase domain of bacterial Pnkp defines a unique RNA ligase family
journal, January 2012

  • Smith, P.; Wang, L. K.; Nair, P. A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 7
  • DOI: 10.1073/pnas.1116827109

DNA Ligases: Progress and Prospects
journal, March 2009


Improved methods for building protein models in electron density maps and the location of errors in these models
journal, March 1991

  • Jones, T. A.; Zou, J. Y.; Cowan, S. W.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 47, Issue 2, p. 110-119
  • DOI: 10.1107/S0108767390010224

Molecular basis of bacterial protein Hen1 activating the ligase activity of bacterial protein Pnkp for RNA repair
journal, July 2012

  • Wang, P.; Chan, C. M.; Christensen, D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 33
  • DOI: 10.1073/pnas.1209805109

Molecular Architecture and Ligand Recognition Determinants for T4 RNA Ligase
journal, November 2005

  • Omari, Kamel El; Ren, Jingshan; Bird, Louise E.
  • Journal of Biological Chemistry, Vol. 281, Issue 3
  • DOI: 10.1074/jbc.M509658200

Cloning and Functional Characterization of an NAD+-Dependent DNA Ligase from Staphylococcus aureus
journal, May 2001


Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli.
journal, May 1967

  • Olivera, B. M.; Lehman, I. R.
  • Proceedings of the National Academy of Sciences, Vol. 57, Issue 5
  • DOI: 10.1073/pnas.57.5.1426

Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi
journal, March 2015


Purification and Properties of Bacteriophage T4-Induced RNA Ligase
journal, October 1972

  • Silber, R.; Malathi, V. G.; Hurwitz, J.
  • Proceedings of the National Academy of Sciences, Vol. 69, Issue 10
  • DOI: 10.1073/pnas.69.10.3009

Structure and Mechanism of RNA Ligase
journal, February 2004


Structure-guided mutational analysis of T4 RNA ligase 1
journal, October 2006


Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis
journal, February 2016

  • Gu, Huiqiong; Yoshinari, Shigeo; Ghosh, Raka
  • Nucleic Acids Research, Vol. 44, Issue 5
  • DOI: 10.1093/nar/gkw094

Conserved Residues in Domain Ia Are Required for the Reaction of Escherichia coli DNA Ligase with NAD +
journal, January 2002

  • Sriskanda, Verl; Shuman, Stewart
  • Journal of Biological Chemistry, Vol. 277, Issue 12
  • DOI: 10.1074/jbc.M111164200

Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide.
journal, June 1967

  • Zimmerman, S. B.; Little, J. W.; Oshinsky, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 57, Issue 6
  • DOI: 10.1073/pnas.57.6.1841

Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA)
journal, January 2009

  • Wang, Li Kai; Zhu, Hui; Shuman, Stewart
  • Journal of Biological Chemistry, Vol. 284, Issue 13
  • DOI: 10.1074/jbc.M808476200

Negishi cross-coupling enabled synthesis of novel NAD+-dependent DNA ligase inhibitors and SAR development
journal, November 2015

  • Murphy-Benenato, Kerry E.; Gingipalli, Lakshmaiah; Boriack-Sjodin, P. Ann
  • Bioorganic & Medicinal Chemistry Letters, Vol. 25, Issue 22
  • DOI: 10.1016/j.bmcl.2015.09.075

Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase
journal, October 2015

  • Unciuleac, Mihaela-Carmen; Goldgur, Yehuda; Shuman, Stewart
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 45
  • DOI: 10.1073/pnas.1516536112

Role of Nucleotidyl Transferase Motif V in Strand Joining by Chlorella Virus DNA Ligase
journal, December 2001

  • Sriskanda, Verl; Shuman, Stewart
  • Journal of Biological Chemistry, Vol. 277, Issue 12
  • DOI: 10.1074/jbc.M110613200

Enzymatic joining of DNA strands, II. An enzyme-adenylate intermediate in the dpn-dependent DNA ligase reaction.
journal, November 1967

  • Little, J. W.; Zimmerman, S. B.; Oshinsky, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 58, Issue 5
  • DOI: 10.1073/pnas.58.5.2004

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Crystal structure of NAD+-dependent DNA ligase: modular architecture and functional implications
journal, March 2000


Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity
journal, November 2012

  • Surivet, Jean-Philippe; Lange, Roland; Hubschwerlen, Christian
  • Bioorganic & Medicinal Chemistry Letters, Vol. 22, Issue 21
  • DOI: 10.1016/j.bmcl.2012.08.094

Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: Aminoalkoxypyrimidine carboxamides
journal, June 2012

  • Gu, Wenxin; Wang, Tiansheng; Maltais, Francois
  • Bioorganic & Medicinal Chemistry Letters, Vol. 22, Issue 11
  • DOI: 10.1016/j.bmcl.2012.04.037

Last Stop on the Road to Repair: Structure of E. coli DNA Ligase Bound to Nicked DNA-Adenylate
journal, April 2007


Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA.
journal, August 1987


DNA Ligase: Structure, Mechanism, and Function
journal, November 1974


Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD + -dependent DNA ligase (LigA)
journal, February 2016

  • Chauleau, Mathieu; Shuman, Stewart
  • Nucleic Acids Research, Vol. 44, Issue 5
  • DOI: 10.1093/nar/gkw049

Functional domains of an NAD + -dependent DNA ligase 1 1Edited by A. R. Fersht
journal, January 1999

  • Timson, David J.; Wigley, Dale B.
  • Journal of Molecular Biology, Vol. 285, Issue 1
  • DOI: 10.1006/jmbi.1998.2302

Discovery of bacterial NAD+-dependent DNA ligase inhibitors: Optimization of antibacterial activity
journal, August 2011

  • Stokes, Suzanne S.; Huynh, Hoan; Gowravaram, Madhusudhan
  • Bioorganic & Medicinal Chemistry Letters, Vol. 21, Issue 15
  • DOI: 10.1016/j.bmcl.2011.05.128

The structure of an archaeal homodimeric ligase which has RNA circularization activity
journal, August 2008

  • Brooks, Mark Adrian; Meslet-Cladiére, Laurence; Graille, Marc
  • Protein Science, Vol. 17, Issue 8
  • DOI: 10.1110/ps.035493.108

Structural Rearrangement Accompanying NAD+ Synthesis within a Bacterial DNA Ligase Crystal
journal, August 2004


Novel Bacterial NAD + -Dependent DNA Ligase Inhibitors with Broad-Spectrum Activity and Antibacterial Efficacy In Vivo
journal, December 2010

  • Mills, Scott D.; Eakin, Ann E.; Buurman, Ed T.
  • Antimicrobial Agents and Chemotherapy, Vol. 55, Issue 3
  • DOI: 10.1128/AAC.01181-10

The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases
journal, December 2004

  • Shuman, Stewart; Lima, Christopher D.
  • Current Opinion in Structural Biology, Vol. 14, Issue 6
  • DOI: 10.1016/j.sbi.2004.10.006

Structure of the DNA Ligase-Adenylate Intermediate: Lysine ( -amino)-Linked Adenosine Monophosphoramidate
journal, October 1971

  • Gumport, R. I.; Lehman, I. R.
  • Proceedings of the National Academy of Sciences, Vol. 68, Issue 10
  • DOI: 10.1073/pnas.68.10.2559

[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Works referencing / citing this record:

Structure and two-metal mechanism of fungal tRNA ligase
journal, December 2018

  • Banerjee, Ankan; Ghosh, Shreya; Goldgur, Yehuda
  • Nucleic Acids Research, Vol. 47, Issue 3
  • DOI: 10.1093/nar/gky1275

T4 DNA ligase structure reveals a prototypical ATP-dependent ligase with a unique mode of sliding clamp interaction
journal, August 2018

  • Shi, Ke; Bohl, Thomas E.; Park, Jeonghyun
  • Nucleic Acids Research, Vol. 46, Issue 19
  • DOI: 10.1093/nar/gky776

Structural intermediates of a DNA–ligase complex illuminate the role of the catalytic metal ion and mechanism of phosphodiester bond formation
journal, July 2019

  • Williamson, Adele; Leiros, Hanna-Kirsti S.
  • Nucleic Acids Research, Vol. 47, Issue 14
  • DOI: 10.1093/nar/gkz596

Structural intermediates of a DNA–ligase complex illuminate the role of the catalytic metal ion and mechanism of phosphodiester bond formation
journal, July 2019

  • Williamson, Adele; Leiros, Hanna-Kirsti S.
  • Nucleic Acids Research, Vol. 47, Issue 14
  • DOI: 10.1093/nar/gkz596

Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates
journal, February 2019

  • Unciuleac, Mihaela-Carmen; Goldgur, Yehuda; Shuman, Stewart
  • Journal of Biological Chemistry, Vol. 294, Issue 13
  • DOI: 10.1074/jbc.ra119.007445

T4 DNA ligase structure reveals a prototypical ATP-dependent ligase with a unique mode of sliding clamp interaction
journal, August 2018

  • Shi, Ke; Bohl, Thomas E.; Park, Jeonghyun
  • Nucleic Acids Research, Vol. 46, Issue 19
  • DOI: 10.1093/nar/gky776