DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

Abstract

We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and addingmore » flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO2. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO2. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrOOE; IOpara = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IOOE; NO2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO2. Finally, the retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.« less

Authors:
 [1];  [2]; ORCiD logo [2]
  1. Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry
  2. Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry; Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES)
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1430260
Grant/Contract Number:  
SC0006080; EPP27450/C13049; EP-P32238/C14974
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 9; Journal Issue: 11; Journal ID: ISSN 1867-8548
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Dix, Barbara, Koenig, Theodore K., and Volkamer, Rainer. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS. United States: N. p., 2016. Web. doi:10.5194/amt-9-5655-2016.
Dix, Barbara, Koenig, Theodore K., & Volkamer, Rainer. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS. United States. https://doi.org/10.5194/amt-9-5655-2016
Dix, Barbara, Koenig, Theodore K., and Volkamer, Rainer. Mon . "Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS". United States. https://doi.org/10.5194/amt-9-5655-2016. https://www.osti.gov/servlets/purl/1430260.
@article{osti_1430260,
title = {Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS},
author = {Dix, Barbara and Koenig, Theodore K. and Volkamer, Rainer},
abstractNote = {We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO2. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO2. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrOOE; IOpara = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IOOE; NO2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO2. Finally, the retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.},
doi = {10.5194/amt-9-5655-2016},
journal = {Atmospheric Measurement Techniques (Online)},
number = 11,
volume = 9,
place = {United States},
year = {Mon Nov 28 00:00:00 EST 2016},
month = {Mon Nov 28 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Combining Active and Passive Airborne Remote Sensing to Quantify NO2 and Ox Production near Bakersfield, CA
journal, November 2013


The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases
journal, January 2013

  • Baidar, S.; Oetjen, H.; Coburn, S.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 3
  • DOI: 10.5194/amt-6-719-2013

Weakening of the weekend ozone effect over California's South Coast Air Basin: WEEKEND OZONE EFFECT OVER CALIFORNIA
journal, November 2015

  • Baidar, S.; Hardesty, R. M.; Kim, S. -W.
  • Geophysical Research Letters, Vol. 42, Issue 21
  • DOI: 10.1002/2015GL066419

NO<sub>2</sub> Profile retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe
journal, January 2006

  • Bruns, M.; Buehler, S. A.; Burrows, J. P.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 10
  • DOI: 10.5194/acp-6-3049-2006

Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US
journal, January 2016

  • Coburn, Sean; Dix, Barbara; Edgerton, Eric
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 6
  • DOI: 10.5194/acp-16-3743-2016

The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features
journal, April 2011

  • Deutschmann, Tim; Beirle, Steffen; Frieß, Udo
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, Issue 6
  • DOI: 10.1016/j.jqsrt.2010.12.009

Airborne multi-axis DOAS measurements of atmospheric trace gases on CARIBIC long-distance flights
journal, January 2009

  • Dix, B.; Brenninkmeijer, C. A. M.; Frieß, U.
  • Atmospheric Measurement Techniques, Vol. 2, Issue 2
  • DOI: 10.5194/amt-2-639-2009

Detection of iodine monoxide in the tropical free troposphere
journal, January 2013

  • Dix, B.; Baidar, S.; Bresch, J. F.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 6
  • DOI: 10.1073/pnas.1212386110

Diffuse radiation in the Galaxy
journal, January 1941

  • Henyey, L. C.; Greenstein, J. L.
  • The Astrophysical Journal, Vol. 93
  • DOI: 10.1086/144246

Validation of SCIAMACHY tropospheric NO<sub>2</sub>-columns with AMAXDOAS measurements
journal, January 2005

  • Heue, K. -P.; Richter, A.; Bruns, M.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1039-2005

SO 2 and BrO observation in the plume of the Eyjafjallajökull volcano 2010: CARIBIC and GOME-2 retrievals
journal, January 2011

  • Heue, K. -P.; Brenninkmeijer, C. A. M.; Baker, A. K.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 6
  • DOI: 10.5194/acp-11-2973-2011

CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud
journal, January 2014

  • Heue, K. -P.; Riede, H.; Walter, D.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 13
  • DOI: 10.5194/acp-14-6621-2014

Multi axis differential optical absorption spectroscopy (MAX-DOAS)
journal, January 2004

  • Hönninger, G.; von Friedeburg, C.; Platt, U.
  • Atmospheric Chemistry and Physics, Vol. 4, Issue 1
  • DOI: 10.5194/acp-4-231-2004

Eight-component retrievals from ground-based MAX-DOAS observations
journal, January 2011

  • Irie, H.; Takashima, H.; Kanaya, Y.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 6
  • DOI: 10.5194/amt-4-1027-2011

Measuring reactive nitrogen emissions from point sources using visible spectroscopy from aircraft
journal, August 2002

  • Melamed, M. L.; Solomon, S.; Daniel, J. S.
  • Journal of Environmental Monitoring, Vol. 5, Issue 1
  • DOI: 10.1039/b204220g

Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO 2 concentration
journal, January 2011

  • Merlaud, A.; Van Roozendael, M.; Theys, N.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-9219-2011

Halogen ions and NO + in the mass spectra of aerosols in the upper troposphere and lower stratosphere
journal, October 2000

  • Murphy, D. M.; Thomson, D. S.
  • Geophysical Research Letters, Vol. 27, Issue 19
  • DOI: 10.1029/1999GL011267

Airborne MAX-DOAS measurements over California: Testing the NASA OMI tropospheric NO 2 product : AMAX-DOAS TESTING OF NASA OMI NO2 (v2.1)
journal, July 2013

  • Oetjen, Hilke; Baidar, Sunil; Krotkov, Nickolay A.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 13
  • DOI: 10.1002/jgrd.50550

Detection of nitrous acid in the atmosphere by differential optical absorption
journal, December 1979


Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over east Asia: RAQMS OZONE PREDICTIONS OVER EAST ASIA
journal, November 2003

  • Pierce, R. B.; Al-Saadi, J. A.; Schaack, T.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D21
  • DOI: 10.1029/2002JD003176

Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America
journal, January 2007

  • Pierce, Robert B.; Schaack, Todd; Al-Saadi, Jassim A.
  • Journal of Geophysical Research, Vol. 112, Issue D12
  • DOI: 10.1029/2006JD007722

Airborne DOAS limb measurements of tropospheric trace gas profiles: case studies on the profile retrieval of O 4 and BrO
journal, January 2011

  • Prados-Roman, C.; Butz, A.; Deutschmann, T.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 6
  • DOI: 10.5194/amt-4-1241-2011

Estimates of free-tropospheric NO2 and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics
journal, January 2016

  • Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-2803-2016

Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem
journal, January 2016

  • Sherwen, Tomás; Schmidt, Johan A.; Evans, Mat J.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 18
  • DOI: 10.5194/acp-16-12239-2016

Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem
journal, January 2016

  • Sherwen, T.; Evans, M. J.; Carpenter, L. J.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-1161-2016

Ship-based detection of glyoxal over the remote tropical Pacific Ocean
journal, January 2010


Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios
journal, January 2013

  • Sinreich, R.; Merten, A.; Molina, L.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 6
  • DOI: 10.5194/amt-6-1521-2013

Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure
journal, January 2013

  • Thalman, Ryan; Volkamer, Rainer
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 37
  • DOI: 10.1039/c3cp50968k

MAX-DOAS O 4 measurements: A new technique to derive information on atmospheric aerosols-Principles and information content : MAX-DOAS O
journal, November 2004

  • Wagner, T.; Dix, B.; Friedeburg, C. v.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D22
  • DOI: 10.1029/2004JD004904

Determination of aerosol properties from MAX-DOAS observations of the Ring effect
journal, January 2009

  • Wagner, T.; Deutschmann, T.; Platt, U.
  • Atmospheric Measurement Techniques, Vol. 2, Issue 2
  • DOI: 10.5194/amt-2-495-2009

Measurements of tropospheric NO<sub>2</sub> with an airborne multi-axis DOAS instrument
journal, January 2005

  • Wang, P.; Richter, A.; Bruns, M.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 2
  • DOI: 10.5194/acp-5-337-2005

Airborne multi-axis DOAS measurements of tropospheric SO<sub>2</sub> plumes in the Po-valley, Italy
journal, January 2006

  • Wang, P.; Richter, A.; Bruns, M.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 2
  • DOI: 10.5194/acp-6-329-2006

Active and widespread halogen chemistry in the tropical and subtropical free troposphere
journal, June 2015

  • Wang, Siyuan; Schmidt, Johan A.; Baidar, Sunil
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505142112

Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury: MODELING THE TROPOSPHERIC BrO BACKGROUND
journal, October 2016

  • Schmidt, J. A.; Jacob, D. J.; Horowitz, H. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 19
  • DOI: 10.1002/2015jd024229

Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure
journal, January 2013

  • Thalman, Ryan; Volkamer, Rainer
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 37
  • DOI: 10.1039/c3cp50968k

Detection of iodine monoxide in the tropical free troposphere
journal, January 2013

  • Dix, B.; Baidar, S.; Bresch, J. F.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 6
  • DOI: 10.1073/pnas.1212386110

Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US
journal, January 2016

  • Coburn, Sean; Dix, Barbara; Edgerton, Eric
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 6
  • DOI: 10.5194/acp-16-3743-2016

Eight-component retrievals from ground-based MAX-DOAS observations
journal, January 2011

  • Irie, H.; Takashima, H.; Kanaya, Y.
  • Atmospheric Measurement Techniques Discussions, Vol. 4, Issue 1
  • DOI: 10.5194/amtd-4-639-2011

SO₂ and BrO observation in the plume of the Eyjafjallajökull volcano 2010 : CARIBIC and GOME-2 retrievals
text, January 2011


Works referencing / citing this record:

Stratospheric Injection of Brominated Very Short-Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models
journal, May 2018

  • Wales, Pamela A.; Salawitch, Ross J.; Nicely, Julie M.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 10
  • DOI: 10.1029/2017jd027978

Quantitative detection of iodine in the stratosphere
journal, January 2020

  • Koenig, Theodore K.; Baidar, Sunil; Campuzano-Jost, Pedro
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 4
  • DOI: 10.1073/pnas.1916828117

Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data
journal, January 2018


Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River
journal, January 2018

  • Hong, Qianqian; Liu, Cheng; Chan, Ka Lok
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 8
  • DOI: 10.5194/acp-18-5931-2018

Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study using WRF-Chem
journal, January 2019

  • Badia, Alba; Reeves, Claire E.; Baker, Alex R.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 5
  • DOI: 10.5194/acp-19-3161-2019

Effect of sea salt aerosol on tropospheric bromine chemistry
journal, January 2019

  • Zhu, Lei; Jacob, Daniel J.; Eastham, Sebastian D.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 9
  • DOI: 10.5194/acp-19-6497-2019

The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign
journal, January 2018

  • Merlaud, Alexis; Tack, Frederik; Constantin, Daniel
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-551-2018

Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study using WRF-Chem
journal, January 2019

  • Badia, Alba; Reeves, Claire E.; Baker, Alex R.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 5
  • DOI: 10.5194/acp-19-3161-2019

Characterisation of African biomass burning plumes and impacts on the atmospheric composition over the south-west Indian Ocean
journal, December 2020

  • Verreyken, Bert; Amelynck, Crist; Brioude, Jérôme
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 23
  • DOI: 10.5194/acp-20-14821-2020

The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign
journal, January 2018

  • Merlaud, Alexis; Tack, Frederik; Constantin, Daniel
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-551-2018