skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries

Abstract

Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g-1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% over 400 cycles at a current density of 2mAcm-2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.

Authors:
 [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [2]; ORCiD logo [1]
  1. Pennsylvania State Univ., University Park, PA (United States). Department of Mechanical and Nuclear Engineering
  2. Pennsylvania State Univ., University Park, PA (United States). Department of Chemical Engineering
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States). Department of Mechanical and Nuclear Engineering; Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1430243
Alternate Identifier(s):
OSTI ID: 1435961
Report Number(s):
DOE-PENN STATE-0007795; DOE-PENNSTATE-0007795
Journal ID: ISSN 2041-1723; PII: 974
Grant/Contract Number:  
EE0007795
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 42 ENGINEERING; Organosulfide; Lithium-Sulfur battery; solid-electrolyte interphase; Li metal

Citation Formats

Li, Guoxing, Gao, Yue, He, Xin, Huang, Qingquan, Chen, Shuru, Kim, Seong H., and Wang, Donghai. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. United States: N. p., 2017. Web. doi:10.1038/s41467-017-00974-x.
Li, Guoxing, Gao, Yue, He, Xin, Huang, Qingquan, Chen, Shuru, Kim, Seong H., & Wang, Donghai. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. United States. doi:10.1038/s41467-017-00974-x.
Li, Guoxing, Gao, Yue, He, Xin, Huang, Qingquan, Chen, Shuru, Kim, Seong H., and Wang, Donghai. Wed . "Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries". United States. doi:10.1038/s41467-017-00974-x. https://www.osti.gov/servlets/purl/1430243.
@article{osti_1430243,
title = {Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries},
author = {Li, Guoxing and Gao, Yue and He, Xin and Huang, Qingquan and Chen, Shuru and Kim, Seong H. and Wang, Donghai},
abstractNote = {Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g-1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% over 400 cycles at a current density of 2mAcm-2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.},
doi = {10.1038/s41467-017-00974-x},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lithium metal stripping/plating mechanisms studies: A metallurgical approach
journal, October 2006


Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


X-ray Photoelectron Spectroscopy Study of Surface Films Formed on Li Electrodes Freshly Prepared in Alkyl Carbonate Solutions
journal, April 1999

  • Schechter, Alex; Aurbach, Doron; Cohen, Hagay
  • Langmuir, Vol. 15, Issue 9
  • DOI: 10.1021/la981048h

Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
journal, February 2004


Protection of lithium metal surfaces using tetraethoxysilane
journal, January 2011

  • Umeda, Grant A.; Menke, Erik; Richard, Monique
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02305A

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Regulating Li deposition at artificial solid electrolyte interphases
journal, January 2017

  • Fan, Lei; Zhuang, Houlong L.; Gao, Lina
  • Journal of Materials Chemistry A, Vol. 5, Issue 7
  • DOI: 10.1039/C6TA10204B

Calibration of rectangular atomic force microscope cantilevers
journal, October 1999

  • Sader, John E.; Chon, James W. M.; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150021

Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode with Atomic Force Microscopy and Spectroscopy
journal, January 2012

  • Zhang, Jie; Wang, Rui; Yang, Xiaocheng
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl300570d

Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery
journal, January 2011

  • Stark, Johanna K.; Ding, Yi; Kohl, Paul A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 10
  • DOI: 10.1149/1.3622348

Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li–S Batteries
journal, February 2014

  • Simmonds, Adam G.; Griebel, Jared J.; Park, Jungjin
  • ACS Macro Letters, Vol. 3, Issue 3
  • DOI: 10.1021/mz400649w

Recent Advances in Battery Science and Technology
journal, June 2015


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


In situ scanning vibrating electrode technique for lithium metal anodes
journal, October 1997


Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode
journal, December 2015

  • Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201503169

Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium–Sulfur Batteries
journal, February 2017


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Measurement of Thin Film Mechanical Properties Using Nanoindentation
journal, July 1992


On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Film forming reaction at the lithium/electrolyte interface
journal, January 1983


Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate
journal, January 2002

  • Mogi, Ryo; Inaba, Minoru; Jeong, Soon-Ki
  • Journal of The Electrochemical Society, Vol. 149, Issue 12
  • DOI: 10.1149/1.1516770

Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles
journal, January 1999

  • Shiraishi, Soshi
  • Journal of The Electrochemical Society, Vol. 146, Issue 5
  • DOI: 10.1149/1.1391818

Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control
journal, March 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Liu, Xin-Yan
  • Journal of the American Chemical Society, Vol. 139, Issue 25
  • DOI: 10.1021/jacs.6b12358

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Effects of Triacetoxyvinylsilane as SEI Layer Additive on Electrochemical Performance of Lithium Metal Secondary Battery
journal, January 2007

  • Lee, Yong Min; Seo, Jeong Eun; Lee, Young-Gi
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 9
  • DOI: 10.1149/1.2750439

Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder
journal, January 1998

  • Funabiki, Atsushi
  • Journal of The Electrochemical Society, Vol. 145, Issue 1
  • DOI: 10.1149/1.1838231

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems
journal, March 1995


Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells
journal, January 2012

  • Zhamu, Aruna; Chen, Guorong; Liu, Chenguang
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C2EE02911A

Force measurements with the atomic force microscope: Technique, interpretation and applications
journal, October 2005


Long Cycle-Life Secondary Lithium Cells Utilizing Tetrahydrofuran
journal, January 1984

  • Abraham, K. M.
  • Journal of The Electrochemical Society, Vol. 131, Issue 9
  • DOI: 10.1149/1.2116049

Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries
journal, February 2016

  • Chen, Shuru; Dai, Fang; Gordin, Mikhail L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 13
  • DOI: 10.1002/anie.201511830

Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies
journal, December 2009


Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

Future prospects of the lithium metal anode
journal, September 1997


Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries
journal, July 2014

  • Griebel, Jared J.; Li, Guoxing; Glass, Richard S.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 2
  • DOI: 10.1002/pola.27314

On the role of cyclic unsaturated additives on the behaviour of lithium metal electrodes in ionic liquid electrolytes
journal, February 2010


Lithium-methylamine reduction. I. Reduction of furan, 2-methylfuran, and furfuryl alcohol
journal, February 1970

  • Bedenbaugh, Angela O.; Bedenbaugh, John H.; Adkins, James D.
  • The Journal of Organic Chemistry, Vol. 35, Issue 2
  • DOI: 10.1021/jo00827a067

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

The use of elemental sulfur as an alternative feedstock for polymeric materials
journal, April 2013

  • Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1624

    Works referencing / citing this record:

    In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
    journal, January 2019

    • Zhou, Hongyao; Liu, Haodong; Li, Yejing
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta02341k

    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery
    journal, January 2019

    • Sun, Ho-Hyun; Dolocan, Andrei; Weeks, Jason A.
    • Journal of Materials Chemistry A, Vol. 7, Issue 30
    • DOI: 10.1039/c9ta05063a

    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
    journal, January 2019

    • Zhou, Hongyao; Liu, Haodong; Li, Yejing
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta02341k

    In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery
    journal, January 2019

    • Sun, Ho-Hyun; Dolocan, Andrei; Weeks, Jason A.
    • Journal of Materials Chemistry A, Vol. 7, Issue 30
    • DOI: 10.1039/c9ta05063a