skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on December 20, 2018

Title: New Ligand Design Provides Delocalization and Promotes Strong Absorption throughout the Visible Region in a Ru(II) Complex

The new Ru(II)–anthraquinone complex [Ru(bpy) 2(qdpq)](PF 6) 2 (Ru-qdpq; bpy = 2,2'-bipyridine; qdpq = 2,3-di(2-pyridyl)naphtho[2,3-f]quinoxaline-7,12-quinone) possesses a strong 1MLCT Ru → qdpq absorption with a maximum at 546 nm that tails into the near-IR and is significantly red-shifted relative to that of the related complex [Ru(bpy) 2(qdppz)](PF 6) 2 (Ru-qdppz; qdppz = naphtho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione), with λ max = 450 nm. Ru-qdppz possesses electronically isolated proximal and distal qdppz-based excited states; the former is initially generated and decays to the latter, which repopulates the ground state with τ = 362 ps. In contrast, excitation of Ru-qdpq results in the population of a relatively long-lived (τ = 19 ns) Ru(dπ) → qdpq(π*) 3MLCT excited state where the promoted electron is delocalized throughout the qdpq ligand. Ultrafast spectroscopy, used together with steady-state absorption, electrochemistry, and DFT calculations, indicates that the unique coordination modes of the qdpq and qdppz ligands impart substantially different electronic communication throughout the quinone-containing ligand, affecting the excited state and electron transfer properties of these molecules. As a result, these observations create a pathway to synthesize complexes with red-shifted absorptions that possess long-lived, redox-active excited states that are useful for various applications, including solar energy conversion and photochemotherapy.
Authors:
 [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. The Ohio State Univ., Columbus, OH (United States). Department of Chemistry and Biochemistry
Publication Date:
Grant/Contract Number:
SC0010542
Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 1; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Research Org:
The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1430217