skip to main content


Title: New Rh 2 (II,II) Architecture for the Catalytic Reduction of H +

Formamidinate-bridged Rh 2 II,II complexes containing diimine ligands of the formula cis-[Rh 2 II,II(μ-DTolF) 2(NN) 2] 2+ (Rh 2-NN 2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H + to H 2 in DMF solutions containing CH 3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a Rh III,II/II,II reduction at -0.90 V vs Fc +/Fc followed by NN 0/– reduction at -1.13, -1.36, and -1.65 V for Rh 2-dppn 2, Rh 2-dppz 2, and Rh 2-phen 2, respectively. Upon the addition of acid, Rh 2-dppn 2 and Rh 2-dppz 2 undergo reduction–protonation–reduction at each pyrazine-containing NN ligand prior to the Rh 2 II,II/II,I reduction. The Rh 2 II,I species is thus protonated at one of the metal centers, resulting in the formation of the corresponding Rh 2 II,III-hydride. In the case of Rh 2-phen 2, the reduction of the phen ligand is followed by intramolecular electron transfer to the Rh 2 II,II core in the presence of protons to form a Rh 2 II,III-hydride species. Further reduction and protonation at the Rh 2 core for all three complexes rapidly catalyzes H 2 formation with variedmore » calculated turnover frequencies (TOF) and overpotential values (η): 2.6 × 10 4 s –1 and 0.56 V for Rh 2-dppn, 2.8 × 10 4 s –1 and 0.50 V for Rh 2-dppz 2, and 5.9 × 10 4 s –1 and 0.64 V for Rh 2-phen 2. Bulk electrolysis confirmed H 2 formation, and further CH 3COOH addition regenerates H 2 production, attesting to the robust nature of the architecture. The cis-[Rh 2 II,II(μ-DTolF) 2(NN) 2] 2+ architecture benefits by combining electron-rich formamidinate bridges, a redox-active Rh 2 II,II core, and electron-accepting NN diimine ligands to allow for the electrocatalysis of H + substrate to H 2 fuel.« less
 [1] ;  [1] ;  [2] ;  [2] ;  [1]
  1. The Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry and Biochemistry
  2. Texas A & M Univ., College Station, TX (United States). Dept. of Chemistry
Publication Date:
Grant/Contract Number:
SC0010542; SC0010721
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 54; Journal Issue: 20; Journal ID: ISSN 0020-1669
American Chemical Society (ACS)
Research Org:
The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrocatalysis; dirhodium; formamidinate; diimine ligands; hydrogen
OSTI Identifier: