skip to main content

DOE PAGESDOE PAGES

Title: Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angularmore » dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less
Authors:
 [1] ;  [2]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics
  2. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center
Publication Date:
Report Number(s):
JLAB-THY-17-2488; DOE/OR/-23177-4160; arXiv:1706.02244
Journal ID: ISSN 2469-9985; PRVCAN
Grant/Contract Number:
AC05-06OR23177; FG02-93ER40771
Type:
Published Article
Journal Name:
Physical Review C
Additional Journal Information:
Journal Volume: 97; Journal Issue: 3; Journal ID: ISSN 2469-9985
Publisher:
American Physical Society (APS)
Research Org:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
OSTI Identifier:
1429942
Alternate Identifier(s):
OSTI ID: 1430042