skip to main content

DOE PAGESDOE PAGES

Title: Effective field theory of dissipative fluids

We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.
Authors:
 [1] ;  [1] ;  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Grant/Contract Number:
FG02-05ER41360
Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2017; Journal Issue: 9; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Research Org:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Effective Field Theories, Space-Time Symmetries, Quantum Dissipative Systems, Supersymmetric Effective Theories
OSTI Identifier:
1429916