A 20-channel magnetoencephalography system based on optically pumped magnetometers
Abstract
In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.
- Authors:
-
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Aegis Technologies Group Inc., Albuquerque, NM (United States)
- Infinera Corporation, Sunnyvale, CA (United States)
- Candoo Systems Inc., Coquitlam, BC (Canada)
- The Mind Research Network and Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)
- Rio Grande Neurosciences, Inc., Santa Fe, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Neurosurgery
- Publication Date:
- Research Org.:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Org.:
- USDOE National Nuclear Security Administration (NNSA); National Inst. of Health (NIH) (United States)
- OSTI Identifier:
- 1429765
- Report Number(s):
- SAND2017-4181J
Journal ID: ISSN 0031-9155; 652641
- Grant/Contract Number:
- NA0003525; R01EB013302
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Physics in Medicine and Biology
- Additional Journal Information:
- Journal Volume: 62; Journal Issue: 23; Journal ID: ISSN 0031-9155
- Publisher:
- IOP Publishing
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 60 APPLIED LIFE SCIENCES; 47 OTHER INSTRUMENTATION; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; magnetoencephalography; optically pumped magnetometer (OPM); auditory evoked magnetic field (AEF); somatosensory evoked magnetic field (SEF); superconducting quantum interference device (SQUID); spin-exchange relaxation-free (SERF); diffractive optical element (DOE)
Citation Formats
Borna, Amir, Carter, Tony R., Goldberg, Josh D., Colombo, Anthony P., Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, and Schwindt, Peter D. D. A 20-channel magnetoencephalography system based on optically pumped magnetometers. United States: N. p., 2017.
Web. doi:10.1088/1361-6560/aa93d1.
Borna, Amir, Carter, Tony R., Goldberg, Josh D., Colombo, Anthony P., Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, & Schwindt, Peter D. D. A 20-channel magnetoencephalography system based on optically pumped magnetometers. United States. https://doi.org/10.1088/1361-6560/aa93d1
Borna, Amir, Carter, Tony R., Goldberg, Josh D., Colombo, Anthony P., Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, and Schwindt, Peter D. D. Mon .
"A 20-channel magnetoencephalography system based on optically pumped magnetometers". United States. https://doi.org/10.1088/1361-6560/aa93d1. https://www.osti.gov/servlets/purl/1429765.
@article{osti_1429765,
title = {A 20-channel magnetoencephalography system based on optically pumped magnetometers},
author = {Borna, Amir and Carter, Tony R. and Goldberg, Josh D. and Colombo, Anthony P. and Jau, Yuan-Yu and Berry, Christopher and McKay, Jim and Stephen, Julia and Weisend, Michael and Schwindt, Peter D. D.},
abstractNote = {In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.},
doi = {10.1088/1361-6560/aa93d1},
journal = {Physics in Medicine and Biology},
number = 23,
volume = 62,
place = {United States},
year = {2017},
month = {10}
}
Web of Science
Works referenced in this record:
Magnetic field imaging with microfabricated optically-pumped magnetometers
journal, January 2017
- Alem, Orang; Mhaskar, Rahul; Jiménez-Martínez, Ricardo
- Optics Express, Vol. 25, Issue 7
On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study
journal, August 2016
- Boto, Elena; Bowtell, Richard; Krüger, Peter
- PLOS ONE, Vol. 11, Issue 8
A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers
journal, April 2017
- Boto, Elena; Meyer, Sofie S.; Shah, Vishal
- NeuroImage, Vol. 149
Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents
journal, August 1968
- Cohen, D.
- Science, Vol. 161, Issue 3843
Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields
journal, February 1972
- Cohen-Tannoudji, Claude; Dupont-Roc, Jacques
- Physical Review A, Vol. 5, Issue 2
Four-channel optically pumped atomic magnetometer for magnetoencephalography
journal, January 2016
- Colombo, Anthony P.; Carter, Tony R.; Borna, Amir
- Optics Express, Vol. 24, Issue 14
Source localization of brain activity using helium-free interferometer
journal, May 2014
- Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard
- Applied Physics Letters, Vol. 104, Issue 21
Artifact Removal in Magnetoencephalogram Background Activity With Independent Component Analysis
journal, November 2007
- Escudero, Javier; Hornero, Roberto; Abasolo, Daniel
- IEEE Transactions on Biomedical Engineering, Vol. 54, Issue 11
Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
journal, April 1993
- Hämäläinen, Matti; Hari, Riitta; Ilmoniemi, Risto J.
- Reviews of Modern Physics, Vol. 65, Issue 2
Robust, high-speed, all-optical atomic magnetometer
journal, November 2006
- Higbie, J. M.; Corsini, E.; Budker, D.
- Review of Scientific Instruments, Vol. 77, Issue 11, Article No. 113106
Measuring MEG closer to the brain: Performance of on-scalp sensor arrays
journal, February 2017
- Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
- NeuroImage, Vol. 147
Multi-sensor magnetoencephalography with atomic magnetometers
journal, August 2013
- Johnson, Cort N.; Schwindt, P. D. D.; Weisend, M.
- Physics in Medicine and Biology, Vol. 58, Issue 17, p. 6065-6077
Multi-channel atomic magnetometer for magnetoencephalography: A configuration study
journal, April 2014
- Kim, Kiwoong; Begus, Samo; Xia, Hui
- NeuroImage, Vol. 89, p. 143-151
A subfemtotesla multichannel atomic magnetometer
journal, April 2003
- Kominis, I. K.; Kornack, T. W.; Allred, J. C.
- Nature, Vol. 422, Issue 6932
A low-power, high-sensitivity micromachined optical magnetometer
journal, December 2012
- Mhaskar, R.; Knappe, S.; Kitching, J.
- Applied Physics Letters, Vol. 101, Issue 24
High- T c superconducting quantum interference device recordings of spontaneous brain activity: Towards high- T c magnetoencephalography
journal, March 2012
- Öisjöen, F.; Schneiderman, J. F.; Figueras, G. A.
- Applied Physics Letters, Vol. 100, Issue 13
BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research
journal, September 2016
- Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin
- Review of Scientific Instruments, Vol. 87, Issue 9
FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data
journal, January 2011
- Oostenveld, Robert; Fries, Pascal; Maris, Eric
- Computational Intelligence and Neuroscience, Vol. 2011
Event-related EEG/MEG synchronization and desynchronization: basic principles
journal, November 1999
- Pfurtscheller, G.; Lopes da Silva, F. H.
- Clinical Neurophysiology, Vol. 110, Issue 11
A microfabricated photonic magnetometer
conference, April 2009
- Preusser, Jan; Knappe, Svenja; Kitching, John
- 2009 Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum
Magnetoencephalography with a chip-scale atomic magnetometer
journal, January 2012
- Sander, T. H.; Preusser, J.; Mhaskar, R.
- Biomedical Optics Express, Vol. 3, Issue 5, p. 981-990
Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique
journal, February 2007
- Schwindt, Peter D. D.; Lindseth, Brad; Knappe, Svenja
- Applied Physics Letters, Vol. 90, Issue 8
Frequency‐domain description of a lock‐in amplifier
journal, February 1994
- Scofield, John H.
- American Journal of Physics, Vol. 62, Issue 2
Spin-exchange relaxation-free magnetometry using elliptically polarized light
journal, July 2009
- Shah, V.; Romalis, M. V.
- Physical Review A, Vol. 80, Issue 1, Article No. 013416
A compact, high performance atomic magnetometer for biomedical applications
journal, November 2013
- Shah, Vishal K.; Wakai, Ronald T.
- Physics in Medicine and Biology, Vol. 58, Issue 22
A magnetic shielded room designed for magnetoencephalography
journal, April 1989
- Sullivan, G. W.; Lewis, P. S.; George, J. S.
- Review of Scientific Instruments, Vol. 60, Issue 4
Magnetic mu rhythm in man
journal, January 1989
- Tiihonen, J.; Kajola, M.; Hari, R.
- Neuroscience, Vol. 32, Issue 3
Independent component approach to the analysis of EEG and MEG recordings
journal, May 2000
- Vigario, R.; Sarela, J.; Jousmiki, V.
- IEEE Transactions on Biomedical Engineering, Vol. 47, Issue 5
Replicability of MEG and EEG measures of the auditory N1/N1m-response
journal, April 1998
- Virtanen, J.; Ahveninen, J.; Ilmoniemi, R. J.
- Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, Vol. 108, Issue 3
Magnetoencephalography with an atomic magnetometer
journal, November 2006
- Xia, H.; Ben-Amar Baranga, A.; Hoffman, D.
- Applied Physics Letters, Vol. 89, Issue 21, Article No. 211104
Asymmetrical enhancement of middle-latency auditory evoked fields with aging
journal, January 2003
- Yamada, Takako; Nakamura, Akinori; Horibe, Kentaro
- Neuroscience Letters, Vol. 337, Issue 1
Works referencing / citing this record:
Potential of on‐scalp MEG: Robust detection of human visual gamma‐band responses
journal, October 2019
- Iivanainen, Joonas; Zetter, Rasmus; Parkkonen, Lauri
- Human Brain Mapping, Vol. 41, Issue 1
Moving magnetoencephalography towards real-world applications with a wearable system
journal, March 2018
- Boto, Elena; Holmes, Niall; Leggett, James
- Nature, Vol. 555, Issue 7698
Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer
journal, November 2018
- Jensen, Kasper; Skarsfeldt, Mark Alexander; Stærkind, Hans
- Scientific Reports, Vol. 8, Issue 1
Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
journal, October 2019
- Holmes, Niall; Tierney, Tim M.; Leggett, James
- Scientific Reports, Vol. 9, Issue 1
A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography
journal, June 2019
- He, Kaiyan; Wan, Shuangai; Sheng, Jingwei
- Review of Scientific Instruments, Vol. 90, Issue 6
Enhanced fully optically pumped magnetic resonance with optical sideband auxiliary pumping
journal, December 2019
- Jiang, Z. Y.; Liu, X. C.; Lin, P. W.
- Optics Letters, Vol. 45, Issue 1
Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System
journal, January 2020
- Borna, Amir; Carter, Tony R.; Colombo, Anthony P.
- PLOS ONE, Vol. 15, Issue 1
Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review
journal, April 2018
- Pu, Yi; Cheyne, Douglas O.; Cornwell, Brian R.
- Frontiers in Neuroscience, Vol. 12
Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements
journal, August 2020
- Westin, Karin; Pfeiffer, Christoph; Andersen, Lau M.
- Clinical Neurophysiology, Vol. 131, Issue 8
Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer
text, January 2018
- Jensen, Kasper; Skarsfeldt, Mark Alexander; Stærkind, Hans C.
- arXiv