skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A 20-channel magnetoencephalography system based on optically pumped magnetometers

Abstract

In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.

Authors:
 [1];  [1];  [2];  [1];  [1];  [3];  [4];  [5];  [6];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Aegis Technologies Group Inc., Albuquerque, NM (United States)
  3. Infinera Corporation, Sunnyvale, CA (United States)
  4. Candoo Systems Inc., Coquitlam, BC (Canada)
  5. The Mind Research Network and Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)
  6. Rio Grande Neurosciences, Inc., Santa Fe, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Neurosurgery
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Inst. of Health (NIH) (United States)
OSTI Identifier:
1429765
Report Number(s):
SAND2017-4181J
Journal ID: ISSN 0031-9155; 652641
Grant/Contract Number:  
NA0003525; R01EB013302
Resource Type:
Accepted Manuscript
Journal Name:
Physics in Medicine and Biology
Additional Journal Information:
Journal Volume: 62; Journal Issue: 23; Journal ID: ISSN 0031-9155
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 47 OTHER INSTRUMENTATION; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; magnetoencephalography; optically pumped magnetometer (OPM); auditory evoked magnetic field (AEF); somatosensory evoked magnetic field (SEF); superconducting quantum interference device (SQUID); spin-exchange relaxation-free (SERF); diffractive optical element (DOE)

Citation Formats

Borna, Amir, Carter, Tony R., Goldberg, Josh D., Colombo, Anthony P., Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, and Schwindt, Peter D. D. A 20-channel magnetoencephalography system based on optically pumped magnetometers. United States: N. p., 2017. Web. https://doi.org/10.1088/1361-6560/aa93d1.
Borna, Amir, Carter, Tony R., Goldberg, Josh D., Colombo, Anthony P., Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, & Schwindt, Peter D. D. A 20-channel magnetoencephalography system based on optically pumped magnetometers. United States. https://doi.org/10.1088/1361-6560/aa93d1
Borna, Amir, Carter, Tony R., Goldberg, Josh D., Colombo, Anthony P., Jau, Yuan-Yu, Berry, Christopher, McKay, Jim, Stephen, Julia, Weisend, Michael, and Schwindt, Peter D. D. Mon . "A 20-channel magnetoencephalography system based on optically pumped magnetometers". United States. https://doi.org/10.1088/1361-6560/aa93d1. https://www.osti.gov/servlets/purl/1429765.
@article{osti_1429765,
title = {A 20-channel magnetoencephalography system based on optically pumped magnetometers},
author = {Borna, Amir and Carter, Tony R. and Goldberg, Josh D. and Colombo, Anthony P. and Jau, Yuan-Yu and Berry, Christopher and McKay, Jim and Stephen, Julia and Weisend, Michael and Schwindt, Peter D. D.},
abstractNote = {In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.},
doi = {10.1088/1361-6560/aa93d1},
journal = {Physics in Medicine and Biology},
number = 23,
volume = 62,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetic field imaging with microfabricated optically-pumped magnetometers
journal, January 2017

  • Alem, Orang; Mhaskar, Rahul; Jiménez-Martínez, Ricardo
  • Optics Express, Vol. 25, Issue 7
  • DOI: 10.1364/OE.25.007849

On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study
journal, August 2016


Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields
journal, February 1972


Four-channel optically pumped atomic magnetometer for magnetoencephalography
journal, January 2016

  • Colombo, Anthony P.; Carter, Tony R.; Borna, Amir
  • Optics Express, Vol. 24, Issue 14
  • DOI: 10.1364/OE.24.015403

Source localization of brain activity using helium-free interferometer
journal, May 2014

  • Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard
  • Applied Physics Letters, Vol. 104, Issue 21
  • DOI: 10.1063/1.4880097

Artifact Removal in Magnetoencephalogram Background Activity With Independent Component Analysis
journal, November 2007

  • Escudero, Javier; Hornero, Roberto; Abasolo, Daniel
  • IEEE Transactions on Biomedical Engineering, Vol. 54, Issue 11
  • DOI: 10.1109/TBME.2007.894968

Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
journal, April 1993

  • Hämäläinen, Matti; Hari, Riitta; Ilmoniemi, Risto J.
  • Reviews of Modern Physics, Vol. 65, Issue 2
  • DOI: 10.1103/RevModPhys.65.413

Robust, high-speed, all-optical atomic magnetometer
journal, November 2006

  • Higbie, J. M.; Corsini, E.; Budker, D.
  • Review of Scientific Instruments, Vol. 77, Issue 11, Article No. 113106
  • DOI: 10.1063/1.2370597

Measuring MEG closer to the brain: Performance of on-scalp sensor arrays
journal, February 2017


Multi-sensor magnetoencephalography with atomic magnetometers
journal, August 2013

  • Johnson, Cort N.; Schwindt, P. D. D.; Weisend, M.
  • Physics in Medicine and Biology, Vol. 58, Issue 17, p. 6065-6077
  • DOI: 10.1088/0031-9155/58/17/6065

Multi-channel atomic magnetometer for magnetoencephalography: A configuration study
journal, April 2014


A subfemtotesla multichannel atomic magnetometer
journal, April 2003

  • Kominis, I. K.; Kornack, T. W.; Allred, J. C.
  • Nature, Vol. 422, Issue 6932
  • DOI: 10.1038/nature01484

Magnetic shields
journal, March 1970


A low-power, high-sensitivity micromachined optical magnetometer
journal, December 2012

  • Mhaskar, R.; Knappe, S.; Kitching, J.
  • Applied Physics Letters, Vol. 101, Issue 24
  • DOI: 10.1063/1.4770361

High- T c superconducting quantum interference device recordings of spontaneous brain activity: Towards high- T c magnetoencephalography
journal, March 2012

  • Öisjöen, F.; Schneiderman, J. F.; Figueras, G. A.
  • Applied Physics Letters, Vol. 100, Issue 13
  • DOI: 10.1063/1.3698152

BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research
journal, September 2016

  • Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin
  • Review of Scientific Instruments, Vol. 87, Issue 9
  • DOI: 10.1063/1.4962020

FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data
journal, January 2011

  • Oostenveld, Robert; Fries, Pascal; Maris, Eric
  • Computational Intelligence and Neuroscience, Vol. 2011
  • DOI: 10.1155/2011/156869

Event-related EEG/MEG synchronization and desynchronization: basic principles
journal, November 1999


A microfabricated photonic magnetometer
conference, April 2009

  • Preusser, Jan; Knappe, Svenja; Kitching, John
  • 2009 Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS), 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum
  • DOI: 10.1109/FREQ.2009.5168385

Magnetoencephalography with a chip-scale atomic magnetometer
journal, January 2012

  • Sander, T. H.; Preusser, J.; Mhaskar, R.
  • Biomedical Optics Express, Vol. 3, Issue 5, p. 981-990
  • DOI: 10.1364/BOE.3.000981

Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique
journal, February 2007

  • Schwindt, Peter D. D.; Lindseth, Brad; Knappe, Svenja
  • Applied Physics Letters, Vol. 90, Issue 8
  • DOI: 10.1063/1.2709532

Frequency‐domain description of a lock‐in amplifier
journal, February 1994

  • Scofield, John H.
  • American Journal of Physics, Vol. 62, Issue 2
  • DOI: 10.1119/1.17629

Spin-exchange relaxation-free magnetometry using elliptically polarized light
journal, July 2009


A compact, high performance atomic magnetometer for biomedical applications
journal, November 2013


A magnetic shielded room designed for magnetoencephalography
journal, April 1989

  • Sullivan, G. W.; Lewis, P. S.; George, J. S.
  • Review of Scientific Instruments, Vol. 60, Issue 4
  • DOI: 10.1063/1.1141016

Magnetic mu rhythm in man
journal, January 1989


Independent component approach to the analysis of EEG and MEG recordings
journal, May 2000

  • Vigario, R.; Sarela, J.; Jousmiki, V.
  • IEEE Transactions on Biomedical Engineering, Vol. 47, Issue 5
  • DOI: 10.1109/10.841330

Replicability of MEG and EEG measures of the auditory N1/N1m-response
journal, April 1998

  • Virtanen, J.; Ahveninen, J.; Ilmoniemi, R. J.
  • Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, Vol. 108, Issue 3
  • DOI: 10.1016/S0168-5597(98)00006-9

Magnetoencephalography with an atomic magnetometer
journal, November 2006

  • Xia, H.; Ben-Amar Baranga, A.; Hoffman, D.
  • Applied Physics Letters, Vol. 89, Issue 21, Article No. 211104
  • DOI: 10.1063/1.2392722

Asymmetrical enhancement of middle-latency auditory evoked fields with aging
journal, January 2003


    Works referencing / citing this record:

    Potential of on‐scalp MEG: Robust detection of human visual gamma‐band responses
    journal, October 2019

    • Iivanainen, Joonas; Zetter, Rasmus; Parkkonen, Lauri
    • Human Brain Mapping, Vol. 41, Issue 1
    • DOI: 10.1002/hbm.24795

    Moving magnetoencephalography towards real-world applications with a wearable system
    journal, March 2018

    • Boto, Elena; Holmes, Niall; Leggett, James
    • Nature, Vol. 555, Issue 7698
    • DOI: 10.1038/nature26147

    Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer
    journal, November 2018


    Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
    journal, October 2019


    A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography
    journal, June 2019

    • He, Kaiyan; Wan, Shuangai; Sheng, Jingwei
    • Review of Scientific Instruments, Vol. 90, Issue 6
    • DOI: 10.1063/1.5066250

    Enhanced fully optically pumped magnetic resonance with optical sideband auxiliary pumping
    journal, December 2019


    Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System
    journal, January 2020


    Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review
    journal, April 2018


    Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements
    journal, August 2020