skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on March 16, 2019

Title: Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide

We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe. Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.
Authors:
 [1] ;  [2] ;  [1]
  1. Univ. of New Mexico, Albuquerque, NM (United States)
  2. Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
SAND-2017-13445J
Journal ID: ISSN 2469-9926; PLRAAN; 659475
Grant/Contract Number:
AC04-94AL85000; NA0003525
Type:
Accepted Manuscript
Journal Name:
Physical Review A
Additional Journal Information:
Journal Volume: 97; Journal Issue: 3; Journal ID: ISSN 2469-9926
Publisher:
American Physical Society (APS)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS
OSTI Identifier:
1429712
Alternate Identifier(s):
OSTI ID: 1426514