skip to main content


Title: Magneto-thermal reconnection processes, related mode momentum and formation of high energy particle populations

In the context of a two-fluid theory of magnetic reconnection, when the longitudinal electron thermal conductivity is relatively large, the perturbed electron temperature tends to become singular in the presence of a reconnected field component and an electron temperature gradient. A finite transverse thermal diffusivity removes this singularity while a finite ‘inductivity’ can remove the singularity of the relevant plasma displacement. Then (i) a new ‘magneto-thermal’ reconnection producing mode, is found with characteristic widths of the reconnection layer remaining significant even when the macroscopic distances involved are very large; (ii) the mode phase velocities can be both in the direction of the electron diamagnetic velocity as well in the opposite (ion) direction. A numerical solution of the complete set of equations has been carried out with a simplified analytical reformulation of the problem. A sequence of processes is analyzed to point out that high-energy particle populations can be produced as a result of reconnection events. These processes involve mode-particle resonances transferring energy of the reconnecting mode to a superthermal ion population and the excitation of lower hybrid waves that can lead to a significant superthermal electron population. The same modes excited in axisymmetric (e.g. toroidal) confinement configurations can extract angularmore » momentum from the main body of the plasma column and thereby sustain a local ‘spontaneous rotation’ of it.« less
 [1] ;  [1] ;  [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Boston Univ., MA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 57; Journal Issue: 7; Journal ID: ISSN 0029-5515
IOP Science
Research Org:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; magneto-thermal reconnection; electron temperature gradient; high energy particle populations
OSTI Identifier: