skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO 2 Absorption and Magnesium Carbonate Precipitation in MgCl 2–NH 3–NH 4Cl Solutions: Implications for Carbon Capture and Storage

Abstract

CO 2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO 2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO 2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO 2 gas to carbonates in MgCl 2–NH 3–NH 4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO 2 absorption when proceeding chiefly through interactions between CO 2(aq) and NH 3(aq). We further quantified the reaction kinetic constant of the CO 2–NH 3 reaction. Our results indicate that higher initial concentration of NH 4Cl ( ≥2mol∙L -1) leads to the precipitation of roguinite [(NH 4) 2Mg(CO 3) 2∙4H 2O], while nesquehonite appears to be the dominant Mg-carbonate without NH 4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO 2 mineral carbonation that indicates the potential of this technique for futuremore » application to industrial-scale CO 2 sequestration.« less

Authors:
 [1];  [1];  [2];  [1];  [1];  [3];  [1]
  1. Nanjing Univ. (China). School of Earth Sciences and Engineering
  2. Univ. of Southern California, Los Angeles, CA (United States). Department of Earth Sciences
  3. Nanjing Univ. (China). School of Earth Sciences and Engineering; George Washington Univ., Washington, DC (United States). Department of Chemistry
Publication Date:
Research Org.:
George Washington Univ., Washington, DC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1429294
Grant/Contract Number:  
FG02-02ER15366
Resource Type:
Accepted Manuscript
Journal Name:
Minerals
Additional Journal Information:
Journal Volume: 7; Journal Issue: 9; Journal ID: ISSN 2075-163X
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 58 GEOSCIENCES; absorption rate; carbon dioxide; carbon capture and storage; magnesium carbonate

Citation Formats

Zhu, Chen, Wang, Han, Li, Gen, An, Siyu, Ding, Xiaofeng, Teng, Hui, and Zhao, Liang. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage. United States: N. p., 2017. Web. doi:10.3390/min7090172.
Zhu, Chen, Wang, Han, Li, Gen, An, Siyu, Ding, Xiaofeng, Teng, Hui, & Zhao, Liang. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage. United States. doi:10.3390/min7090172.
Zhu, Chen, Wang, Han, Li, Gen, An, Siyu, Ding, Xiaofeng, Teng, Hui, and Zhao, Liang. Tue . "CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage". United States. doi:10.3390/min7090172. https://www.osti.gov/servlets/purl/1429294.
@article{osti_1429294,
title = {CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage},
author = {Zhu, Chen and Wang, Han and Li, Gen and An, Siyu and Ding, Xiaofeng and Teng, Hui and Zhao, Liang},
abstractNote = {CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2–NH3–NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq) and NH3(aq). We further quantified the reaction kinetic constant of the CO2–NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥2mol∙L-1) leads to the precipitation of roguinite [(NH4)2Mg(CO3)2∙4H2O], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.},
doi = {10.3390/min7090172},
journal = {Minerals},
number = 9,
volume = 7,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The kinetics of combination of carbon dioxide with hydroxide ions
journal, January 1956

  • Pinsent, B. R. W.; Pearson, L.; Roughton, F. J. W.
  • Transactions of the Faraday Society, Vol. 52
  • DOI: 10.1039/tf9565201512

Bioleaching of Ultramafic Tailings by Acidithiobacillus spp. for CO 2 Sequestration
journal, January 2010

  • Power, Ian M.; Dipple, Gregory M.; Southam, Gordon
  • Environmental Science & Technology, Vol. 44, Issue 1
  • DOI: 10.1021/es900986n

Kinetics of absorption of carbon dioxide in aqueous ammonia solutions
journal, February 2009


Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 2. Detailed Investigation and Model Development
journal, November 2009

  • Van Essendelft, Dirk T.; Schobert, Harold H.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 22
  • DOI: 10.1021/ie9005832

Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate
journal, July 2014

  • Han, Bing; Qu, Haiyan; Niemi, Harri
  • Chemical Engineering & Technology, Vol. 37, Issue 8
  • DOI: 10.1002/ceat.201300855

Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO 2 -Rich Brine through Peridotites
journal, February 2009

  • Andreani, M.; Luquot, L.; Gouze, P.
  • Environmental Science & Technology, Vol. 43, Issue 4
  • DOI: 10.1021/es8018429

The kinetics of combination of carbon dioxide with ammonia
journal, January 1956

  • Pinsent, B. R. W.; Pearson, L.; Roughton, F. J. W.
  • Transactions of the Faraday Society, Vol. 52
  • DOI: 10.1039/tf9565201594

Mechanochemical processing of serpentine with ammonium salts under ambient conditions for CO2 mineralization
journal, January 2012

  • Highfield, James; Lim, HuiQi; Fagerlund, Johan
  • RSC Advances, Vol. 2, Issue 16
  • DOI: 10.1039/c2ra20575k

Fire retardant action of mineral fillers
journal, August 2011


The absorption rate of CO2 by aqueous ammonia in a packed column
journal, April 2013


Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution
journal, January 1989

  • Crooks, John E.; Donnellan, J. Paul
  • Journal of the Chemical Society, Perkin Transactions 2, Issue 4
  • DOI: 10.1039/p29890000331

Geology and geochemistry of paleoproterozoic magnesite deposits (∼1.8Ga), State of Ceará, Northeastern Brazil
journal, March 2004

  • Parente, Clóvis Vaz; Ronchi, Luis Henrique; Sial, Alcides Nóbrega
  • Carbonates and Evaporites, Vol. 19, Issue 1
  • DOI: 10.1007/BF03175194

Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada
journal, December 2007

  • Power, Ian M.; Wilson, Siobhan A.; Thom, James M.
  • Geochemical Transactions, Vol. 8, Issue 1
  • DOI: 10.1186/1467-4866-8-13

Dissolution of Magnesium from Serpentine Mineral in Sulfuric Acid Solution
journal, January 2009


Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralisation
journal, October 2016


Accelerating Mineral Carbonation Using Carbonic Anhydrase
journal, February 2016

  • Power, Ian M.; Harrison, Anna L.; Dipple, Gregory M.
  • Environmental Science & Technology, Vol. 50, Issue 5
  • DOI: 10.1021/acs.est.5b04779

CO2 disposal by means of silicates
journal, June 1990


Nucleation kinetics of nesquehonite (MgCO3·3H2O) in the MgCl2−Na2CO3 system
journal, April 2010


Experimental measurement and modeling of the rate of absorption of carbon dioxide by aqueous ammonia
journal, September 2011

  • Darde, Victor; van Well, Willy J. M.; Fosboel, Philip L.
  • International Journal of Greenhouse Gas Control, Vol. 5, Issue 5
  • DOI: 10.1016/j.ijggc.2011.07.008

Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite, and calcite in speleothems of the Fr�nkische Schweiz, Western Germany
journal, January 1971

  • Fischbeck, Reinhard; M�ller, German
  • Contributions to Mineralogy and Petrology, Vol. 33, Issue 2
  • DOI: 10.1007/BF00386107

Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: Its potential role in the sequestration of carbon dioxide
journal, September 2009


Rapid Growth of Magnesium-Carbonate Weathering Products in a Stony Meteorite from Antarctica
journal, October 1988


Production of magnesium carbonates from serpentinite for long-term storage of CO2
journal, December 2007

  • Teir, Sebastian; Kuusik, Rein; Fogelholm, Carl-Johan
  • International Journal of Mineral Processing, Vol. 85, Issue 1-3
  • DOI: 10.1016/j.minpro.2007.08.007

CO2 absorption by aqueous NH3 solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study
journal, January 2006

  • Mani, Fabrizio; Peruzzini, Maurizio; Stoppioni, Piero
  • Green Chemistry, Vol. 8, Issue 11
  • DOI: 10.1039/b602051h

Thermodynamic and kinetic effect of organic solvent on the nucleation of nesquehonite
journal, April 2013


Genesis of magnesite deposits in the view of isotope geochemistry
journal, June 2002


Mixing and Crystallization Kinetics in Gas-liquid Reactive Crystallization
journal, May 2004

  • Chen, P. -C.; Chen, C. C.; Fun, M. H.
  • Chemical Engineering & Technology, Vol. 27, Issue 5
  • DOI: 10.1002/ceat.200401933

Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review
journal, January 2014


Carbon Sequestration via Aqueous Olivine Mineral Carbonation:  Role of Passivating Layer Formation
journal, August 2006

  • Béarat, Hamdallah; McKelvy, Michael J.; Chizmeshya, Andrew V. G.
  • Environmental Science & Technology, Vol. 40, Issue 15
  • DOI: 10.1021/es0523340

Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions
journal, January 2012


Gas–Liquid Reactive Crystallization Kinetics of Hydromagnesite in the MgCl 2 –CO 2 –NH 3 –H 2 O System: Its Potential in CO 2 Sequestration
journal, December 2012

  • Wang, Daoguang; Li, Zhibao
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 50
  • DOI: 10.1021/ie302271u

Living hydromagnesite stromatolites from Turkey
journal, August 1994


A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems
journal, November 2016

  • Zhu, Chen; Yao, Xizhi; Zhao, Liang
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4967715

Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?
journal, March 2016


The fire retardant behaviour of huntite and hydromagnesite – A review
journal, December 2010


The effect of solution chemistry on nucleation of nesquehonite
journal, December 2016

  • Zhu, Chen; Wang, Zhengrong; Zhao, Liang
  • American Journal of Science, Vol. 316, Issue 10
  • DOI: 10.2475/10.2016.03

Insights into the dissolution kinetics of thermally activated serpentine for CO2 sequestration
journal, December 2017


CO2 Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine
journal, June 2003

  • Park, Ah-Hyung Alissa; Jadhav, Raja; Fan, Liang-Shih
  • The Canadian Journal of Chemical Engineering, Vol. 81, Issue 3-4, p. 885-890
  • DOI: 10.1002/cjce.5450810373

Temperature- and pH-Dependent Morphology and FT−IR Analysis of Magnesium Carbonate Hydrates
journal, July 2006

  • Zhang, Zhiping; Zheng, Yajun; Ni, Yuwen
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061261j

Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation
journal, March 2011


Low-temperature thermodynamic model for the system Na2CO3−MgCO3−CaCO3−H2O
journal, October 1999

  • Königsberger, Erich; Königsberger, Lan-Chi; Gamsjäger, Heinz
  • Geochimica et Cosmochimica Acta, Vol. 63, Issue 19-20
  • DOI: 10.1016/S0016-7037(99)00238-0

The Transformation of Nesquehonite to Hydromagnesite in the System CaO-MgO-H 2 O-CO 2 : An Experimental Spectroscopic Study
journal, July 2008

  • Hopkinson, Laurence; Rutt, Ken; Cressey, Gordon
  • The Journal of Geology, Vol. 116, Issue 4
  • DOI: 10.1086/588834

Characteristics of multistage column crystallizer for gas–liquid reactive crystallization of calcium carbonate
journal, September 2006


Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 1. Initial Investigations
journal, March 2009

  • Van Essendelft, Dirk T.; Schobert, Harold H.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 5
  • DOI: 10.1021/ie801085x

Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 3. Model Validation and Prediction
journal, February 2010

  • Van Essendelft, Dirk T.; Schobert, Harold H.
  • Industrial & Engineering Chemistry Research, Vol. 49, Issue 4
  • DOI: 10.1021/ie901159t

A review on carbon dioxide mineral carbonation through pH-swing process
journal, November 2015

  • Azdarpour, Amin; Asadullah, Mohammad; Mohammadian, Erfan
  • Chemical Engineering Journal, Vol. 279
  • DOI: 10.1016/j.cej.2015.05.064

The crystallization of magnesite from aqueous solution
journal, January 1973


Rapid Precipitation of Magnesite Microcrystals from Mg(OH) 2 -H 2 O-CO 2 Slurry Enhanced by NaOH and a Heat-Aging Step (from ∼20 to 90 °C)
journal, October 2012

  • Montes-Hernandez, G.; Renard, F.; Chiriac, R.
  • Crystal Growth & Design, Vol. 12, Issue 11
  • DOI: 10.1021/cg300652s

The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?
journal, December 2003


Sequestering CO2 by Mineralization into Useful Nesquehonite-Based Products
journal, February 2016

  • Glasser, Fredrik Paul; Jauffret, Guillaume; Morrison, Jennie
  • Frontiers in Energy Research, Vol. 4
  • DOI: 10.3389/fenrg.2016.00003

Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure
journal, February 2008

  • Hänchen, Markus; Prigiobbe, Valentina; Baciocchi, Renato
  • Chemical Engineering Science, Vol. 63, Issue 4
  • DOI: 10.1016/j.ces.2007.09.052

Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system
journal, June 2001


Reactive crystallization of calcium carbonate by gas-liquid and liquid-liquid reactions
journal, June 1990

  • Kotaki, Yasushi; Tsuge, Hideki
  • The Canadian Journal of Chemical Engineering, Vol. 68, Issue 3
  • DOI: 10.1002/cjce.5450680313

Aqueous Carbonation of Natural Brucite: Relevance to CO 2 Sequestration
journal, January 2010

  • Zhao, Liang; Sang, Liqin; Chen, Jun
  • Environmental Science & Technology, Vol. 44, Issue 1
  • DOI: 10.1021/es9017656

Accelerated Carbonation of Brucite in Mine Tailings for Carbon Sequestration
journal, July 2012

  • Harrison, Anna L.; Power, Ian M.; Dipple, Gregory M.
  • Environmental Science & Technology, Vol. 47, Issue 1
  • DOI: 10.1021/es3012854

Absorption of carbon dioxide in aqueous ammonia
journal, February 2009


Scrubbing of CO 2 Greenhouse Gases, Accompanied by Precipitation in a Continuous Bubble-Column Scrubber
journal, August 2008

  • Chen, Pao-Chi; Shi, Welly; Du, Ruby
  • Industrial & Engineering Chemistry Research, Vol. 47, Issue 16
  • DOI: 10.1021/ie070324x

Directed precipitation of hydrated and anhydrous magnesium carbonates for carbon storage
journal, January 2014

  • Swanson, Edward J.; Fricker, Kyle J.; Sun, Michael
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 42
  • DOI: 10.1039/C4CP03491K

Removal of carbon dioxide by reactive crystallization in a scrubber—kinetics of barium carbonate crystals
journal, April 2002


Absorption with chemical reaction: development of a new relation for the Danckwerts model
journal, September 1974


The fire retardant effects of huntite in natural mixtures with hydromagnesite
journal, April 2012


mineral sequestration: physically activated dissolution of serpentine and pH swing process
journal, November 2004

  • Park, Ah-Hyung Alissa; Fan, Liang-Shih
  • Chemical Engineering Science, Vol. 59, Issue 22-23, p. 5241-5247
  • DOI: 10.1016/j.ces.2004.09.008

Dissolution of Activated Serpentine for Direct Flue-Gas Mineralization
journal, January 2013


Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems
journal, June 2006


Enhancing the rate of ex situ mineral carbonation in dunites via ball milling
journal, March 2016

  • Rigopoulos, Ioannis; Vasiliades, Michalis A.; Ioannou, Ioannis
  • Advanced Powder Technology, Vol. 27, Issue 2
  • DOI: 10.1016/j.apt.2016.01.007

Kinetics of the Reversible Reaction of CO 2 (aq) with Ammonia in Aqueous Solution
journal, June 2011

  • Wang, Xiaoguang; Conway, William; Fernandes, Debra
  • The Journal of Physical Chemistry A, Vol. 115, Issue 24
  • DOI: 10.1021/jp108491a

Kinetics of CO2 absorption in aqueous ammonia solution
journal, September 2010

  • Qin, Feng; Wang, Shujuan; Hartono, Ardi
  • International Journal of Greenhouse Gas Control, Vol. 4, Issue 5
  • DOI: 10.1016/j.ijggc.2010.04.010

Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration
journal, July 2011

  • Krevor, Samuel C. M.; Lackner, Klaus S.
  • International Journal of Greenhouse Gas Control, Vol. 5, Issue 4
  • DOI: 10.1016/j.ijggc.2011.01.006