skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on February 16, 2019

Title: Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep

Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Authors:
 [1] ;  [1] ; ORCiD logo [2] ;  [3] ;  [4]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Tohoku Univ., Sendai (Japan)
  4. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 148; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1429195