Ultrafast rotation in an amphidynamic crystalline metal organic framework
- Univ. of California, Los Angeles, CA (United States)
- Univ. of Central Florida, Orlando, FL (United States)
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol-1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1427926
- Report Number(s):
- PNNL-SA-125469; 45292; KP1704020
- Journal Information:
- Proceedings of the National Academy of Sciences of the United States of America, Vol. 114, Issue 52; ISSN 0027-8424
- Publisher:
- National Academy of Sciences, Washington, DC (United States)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Neutron Inelastic Scattering Studies of Globular Compounds
Synthesis, structure and properties of zinc(II) coordination polymers with 9H-carbazole-2,7-dicarboxylic acid