skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study

Abstract

In this paper, the discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O2 cell.

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [4];  [4];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States); Univ. of Illinois at Chicago, Chicago, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); California State Univ. Northridge, Northridge, CA (United States)
  4. Univ. of Illinois at Chicago, Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1427483
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nano Research
Additional Journal Information:
Journal Volume: 10; Journal Issue: 12; Journal ID: ISSN 1998-0124
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; rechargeable Li-O2 battery; electrocatalyst; nanocomposite; lithium peroxide

Citation Formats

Luo, Xiangyi, Amine, Rachid, Lau, Kah Chun, Lu, Jun, Zhan, Chun, Curtiss, Larry A., Al Hallaj, Said, Chaplin, Brian P., and Amine, Khalil. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. United States: N. p., 2017. Web. doi:10.1007/s12274-017-1529-z.
Luo, Xiangyi, Amine, Rachid, Lau, Kah Chun, Lu, Jun, Zhan, Chun, Curtiss, Larry A., Al Hallaj, Said, Chaplin, Brian P., & Amine, Khalil. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. United States. doi:10.1007/s12274-017-1529-z.
Luo, Xiangyi, Amine, Rachid, Lau, Kah Chun, Lu, Jun, Zhan, Chun, Curtiss, Larry A., Al Hallaj, Said, Chaplin, Brian P., and Amine, Khalil. Fri . "Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study". United States. doi:10.1007/s12274-017-1529-z. https://www.osti.gov/servlets/purl/1427483.
@article{osti_1427483,
title = {Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study},
author = {Luo, Xiangyi and Amine, Rachid and Lau, Kah Chun and Lu, Jun and Zhan, Chun and Curtiss, Larry A. and Al Hallaj, Said and Chaplin, Brian P. and Amine, Khalil},
abstractNote = {In this paper, the discharge and charge mechanisms of rechargeable Li-O2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied current exceeds the exchange current for the oxygen reduction reaction in a Li-O2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O2 cell.},
doi = {10.1007/s12274-017-1529-z},
journal = {Nano Research},
number = 12,
volume = 10,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions
journal, September 2016


Lithium and oxygen vacancies and their role in Li 2 O 2 charge transport in Li–O 2 batteries
journal, January 2014

  • Varley, J. B.; Viswanathan, V.; Nørskov, J. K.
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE42446D

A stable sulfone based electrolyte for high performance rechargeable Li–O2 batteries
journal, January 2012

  • Xu, Dan; Wang, Zhong-li; Xu, Ji-jing
  • Chemical Communications, Vol. 48, Issue 95
  • DOI: 10.1039/c2cc36815c

Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
journal, December 2011

  • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2087412

Synthesis and characterization of submicron size particles of LiMn2O4 by microemulsion route
journal, March 2008

  • Sinha, Nupur Nikkan; Munichandraiah, N.
  • Journal of Solid State Electrochemistry, Vol. 12, Issue 12
  • DOI: 10.1007/s10008-008-0538-y

Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries
journal, January 2013

  • Du, Peng; Lu, Jun; Lau, Kah Chun
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 15
  • DOI: 10.1039/c3cp50500f

A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries
journal, January 2014

  • Younesi, R.; Norby, P.; Vegge, T.
  • ECS Electrochemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1149/2.001403eel

Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
journal, April 2010

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp102019y

A review of cathode materials and structures for rechargeable lithium–air batteries
journal, January 2015

  • Ma, Zhong; Yuan, Xianxia; Li, Lin
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE00838G

Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries
journal, January 2013

  • Radin, Maxwell D.; Siegel, Donald J.
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41632a

Synthesis of a meso–macro hierarchical porous carbon material for improvement of O2 diffusivity in Li–O2 batteries
journal, January 2014

  • Nie, Hongjiao; Zhang, Yining; Li, Jing
  • RSC Advances, Vol. 4, Issue 33
  • DOI: 10.1039/c4ra01940g

A Transmission Electron Microscopy Study of the Electrochemical Process of Lithium–Oxygen Cells
journal, July 2012

  • Jung, Hun-Gi; Kim, Hee-Soo; Park, Jin-Bum
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl302066d

Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O 2 battery
journal, April 2015


Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries
journal, January 2011

  • Mitchell, Robert R.; Gallant, Betar M.; Thompson, Carl V.
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01496j

Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries
journal, December 2014


A Rechargeable Li–O 2 Battery Using a Lithium Nitrate/ N , N -Dimethylacetamide Electrolyte
journal, January 2013

  • Walker, Wesley; Giordani, Vincent; Uddin, Jasim
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja311518s

Morphological and Crystalline Evolution of Nanostructured MnO 2 and Its Application in Lithium–Air Batteries
journal, August 2012

  • Truong, Tu T.; Liu, Yuzi; Ren, Yang
  • ACS Nano, Vol. 6, Issue 9
  • DOI: 10.1021/nn302654p

Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions
journal, November 2016


Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries
journal, June 2008

  • Débart, Aurélie; Paterson, Allan J.; Bao, Jianli
  • Angewandte Chemie International Edition, Vol. 47, Issue 24, p. 4521-4524
  • DOI: 10.1002/anie.200705648

Electrical conductivity in Li 2 O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries
journal, December 2011

  • Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.
  • The Journal of Chemical Physics, Vol. 135, Issue 21
  • DOI: 10.1063/1.3663385

Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth
journal, March 2013

  • Mitchell, Robert R.; Gallant, Betar M.; Shao-Horn, Yang
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 7, p. 1060-1064
  • DOI: 10.1021/jz4003586

High Capacity Li–O[sub 2] Cell and Electrochemical Impedance Spectroscopy Study
journal, January 2010

  • Eswaran, M.; Munichandraiah, N.; Scanlon, L. G.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 9
  • DOI: 10.1149/1.3447867

Ordered Mesoporous Carbon Electrodes for Li–O 2 Batteries
journal, November 2013

  • Park, Jin-Bum; Lee, Jinwoo; Yoon, Chong Seung
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 24
  • DOI: 10.1021/am404336f

Non-Aqueous and Hybrid Li-O2 Batteries
journal, May 2012

  • Black, Robert; Adams, Brian; Nazar, L. F.
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200001