skip to main content

DOE PAGESDOE PAGES

Title: Bi-enhanced N incorporation in GaAsNBi alloys

We have examined the influence of bismuth (Bi) and nitrogen (N) fluxes on N and Bi incorporation during molecular-beam epitaxy of GaAs 1-x-yN xBi y alloys. The incorporation of Bi is found to be independent of N flux, while the total N incorporation and the fraction of N atoms occupying non-substitutional lattice sites increase with increasing Bi flux. A comparison of channeling nuclear reaction analysis along the [100], [110], and [111] directions with Monte Carlo-Molecular Dynamics simulations indicates that the non-substitutional N primarily incorporate as (N-As) As interstitial complexes. We discuss the influence of Bi adatoms on the formation of arsenic-terminated [110]-oriented step-edges and the resulting enhancement in total N incorporation via the formation of additional (N-As) As.
Authors:
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [2] ;  [3] ; ORCiD logo [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. Alfred Univ., NY (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
LA-UR-18-21407
Journal ID: ISSN 0003-6951
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 110; Journal Issue: 24; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science
OSTI Identifier:
1427392