DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography

Abstract

Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [5];  [6];  [2]; ORCiD logo [2];  [2];  [7]; ORCiD logo [8];  [9]; ORCiD logo [2];  [2]; ORCiD logo [8];  [2];  [2]; ORCiD logo [10]; ORCiD logo [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of Illinois, Chicago, IL (United States). Dept. of Chemistry
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  3. Univ. of Illinois, Chicago, IL (United States). Dept. of Chemistry; Chungnam National Univ., Daejeon (South Korea). Dept. of Materials Science and Engineering
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  5. Univ. of Cambridge (United Kingdom). Dept. of Chemistry; Stony Brook Univ., NY (United States). Dept. of Chemistry
  6. Univ. of Cambridge (United Kingdom). Dept. of Chemistry
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Engineering Division
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
  9. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology
  10. Univ. of Illinois, Chicago, IL (United States). Dept. of Chemistry
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Research Foundation of Korea (NRF); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
OSTI Identifier:
1427169
Alternate Identifier(s):
OSTI ID: 1433136
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; SC0012583
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Batteries; Imaging

Citation Formats

Yu, Young-Sang, Farmand, Maryam, Kim, Chunjoong, Liu, Yijin, Grey, Clare P., Strobridge, Fiona C., Tyliszczak, Tolek, Celestre, Rich, Denes, Peter, Joseph, John, Krishnan, Harinarayan, Maia, Filipe R. N. C., Kilcoyne, A. L. David, Marchesini, Stefano, Leite, Talita Perciano Costa, Warwick, Tony, Padmore, Howard, Cabana, Jordi, and Shapiro, David A. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. United States: N. p., 2018. Web. doi:10.1038/s41467-018-03401-x.
Yu, Young-Sang, Farmand, Maryam, Kim, Chunjoong, Liu, Yijin, Grey, Clare P., Strobridge, Fiona C., Tyliszczak, Tolek, Celestre, Rich, Denes, Peter, Joseph, John, Krishnan, Harinarayan, Maia, Filipe R. N. C., Kilcoyne, A. L. David, Marchesini, Stefano, Leite, Talita Perciano Costa, Warwick, Tony, Padmore, Howard, Cabana, Jordi, & Shapiro, David A. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. United States. https://doi.org/10.1038/s41467-018-03401-x
Yu, Young-Sang, Farmand, Maryam, Kim, Chunjoong, Liu, Yijin, Grey, Clare P., Strobridge, Fiona C., Tyliszczak, Tolek, Celestre, Rich, Denes, Peter, Joseph, John, Krishnan, Harinarayan, Maia, Filipe R. N. C., Kilcoyne, A. L. David, Marchesini, Stefano, Leite, Talita Perciano Costa, Warwick, Tony, Padmore, Howard, Cabana, Jordi, and Shapiro, David A. Fri . "Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography". United States. https://doi.org/10.1038/s41467-018-03401-x. https://www.osti.gov/servlets/purl/1427169.
@article{osti_1427169,
title = {Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography},
author = {Yu, Young-Sang and Farmand, Maryam and Kim, Chunjoong and Liu, Yijin and Grey, Clare P. and Strobridge, Fiona C. and Tyliszczak, Tolek and Celestre, Rich and Denes, Peter and Joseph, John and Krishnan, Harinarayan and Maia, Filipe R. N. C. and Kilcoyne, A. L. David and Marchesini, Stefano and Leite, Talita Perciano Costa and Warwick, Tony and Padmore, Howard and Cabana, Jordi and Shapiro, David A.},
abstractNote = {Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.},
doi = {10.1038/s41467-018-03401-x},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Fri Mar 02 00:00:00 EST 2018},
month = {Fri Mar 02 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 87 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Chemically sensitive structure-imaging with a scanning transmission electron microscope
journal, December 1988

  • Pennycook, S. J.; Boatner, L. A.
  • Nature, Vol. 336, Issue 6199
  • DOI: 10.1038/336565a0

Atomic-resolution chemical analysis using a scanning transmission electron microscope
journal, November 1993

  • Browning, N. D.; Chisholm, M. F.; Pennycook, S. J.
  • Nature, Vol. 366, Issue 6451
  • DOI: 10.1038/366143a0

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li x FePO 4
journal, October 2006


Confirmation of the Domino-Cascade Model by LiFePO 4 /FePO 4 Precession Electron Diffraction
journal, October 2011

  • Brunetti, G.; Robert, D.; Bayle-Guillemaud, P.
  • Chemistry of Materials, Vol. 23, Issue 20
  • DOI: 10.1021/cm201783z

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO 4 Particles Revealed through Nanoscale Operando State-of-Charge Imaging
journal, May 2015

  • Li, Yiyang; Weker, Johanna Nelson; Gent, William E.
  • Advanced Functional Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adfm.201500286

Highly ordered staging structural interface between LiFePO4 and FePO4
journal, January 2012

  • Suo, Liumin; Han, Wenze; Lu, Xia
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 16
  • DOI: 10.1039/c2cp40610a

Overview of olivines in lithium batteries for green transportation and energy storage
journal, January 2012

  • Zaghib, K.; Mauger, A.; Julien, C. M.
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 3
  • DOI: 10.1007/s10008-011-1629-8

Beyond crystallography: Diffractive imaging using coherent x-ray light sources
journal, April 2015


Coherency Strain and the Kinetics of Phase Separation in LiFePO 4 Nanoparticles
journal, February 2012

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204177u

Theory of Coherent Nucleation in Phase-Separating Nanoparticles
journal, May 2013

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400497t

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404285y

Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

Relaxed averaged alternating reflections for diffraction imaging
journal, November 2004


Chemical composition mapping with nanometre resolution by soft X-ray microscopy
journal, September 2014


Study of the Li-insertion/extraction process in LiFePO4/FePO4
journal, February 2009


Local Electronic Structure of Olivine Phases of Li x FePO 4
journal, May 2007

  • Miao, Shu; Kocher, Michael; Rez, Peter
  • The Journal of Physical Chemistry A, Vol. 111, Issue 20
  • DOI: 10.1021/jp068605q

The thermodynamic stability of intermediate solid solutions in LiFePO 4 nanoparticles
journal, January 2016

  • Abdellahi, A.; Akyildiz, O.; Malik, R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 15
  • DOI: 10.1039/C5TA10498J

Nanoscale X-ray imaging
journal, December 2010


Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling
journal, July 2014

  • Yang, Feifei; Liu, Yijin; Martha, Surendra K.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl502090z

Aging Mechanisms of LiFePO 4 // Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces
journal, January 2012

  • Castro, L.; Dedryvère, R.; Ledeuil, J. -B.
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.024204jes

Electronic structure of phospho-olivines LixFePO4 (x=0,1) from soft-x-ray-absorption and -emission spectroscopies
journal, November 2005

  • Augustsson, A.; Zhuang, G. V.; Butorin, S. M.
  • The Journal of Chemical Physics, Vol. 123, Issue 18
  • DOI: 10.1063/1.2107387

Three-dimensional chemical mapping by scanning transmission X-ray spectromicroscopy
journal, August 2007

  • Johansson, Göran A.; Tyliszczak, Tolek; Mitchell, Gary E.
  • Journal of Synchrotron Radiation, Vol. 14, Issue 5
  • DOI: 10.1107/S0909049507029962

Phase Transformation and Lithiation Effect on Electronic Structure of Li x FePO 4 : An In-Depth Study by Soft X-ray and Simulations
journal, August 2012

  • Liu, Xiaosong; Liu, Jun; Qiao, Ruimin
  • Journal of the American Chemical Society, Vol. 134, Issue 33
  • DOI: 10.1021/ja303225e

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries
journal, September 2015

  • Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9169

The source of first-cycle capacity loss in LiFePO4
journal, July 2001


The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
journal, February 2005

  • Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1335

Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy
journal, July 2011

  • Meirer, Florian; Cabana, Jordi; Liu, Yijin
  • Journal of Synchrotron Radiation, Vol. 18, Issue 5
  • DOI: 10.1107/S0909049511019364

Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography
journal, December 1970


Dynamic Solubility Limits in Nanosized Olivine LiFePO 4
journal, July 2011

  • Wagemaker, Marnix; Singh, Deepak P.; Borghols, Wouter J. H.
  • Journal of the American Chemical Society, Vol. 133, Issue 26
  • DOI: 10.1021/ja2026213

Direct Observation of a Metastable Crystal Phase of Li x FePO 4 under Electrochemical Phase Transition
journal, April 2013

  • Orikasa, Yuki; Maeda, Takehiro; Koyama, Yukinori
  • Journal of the American Chemical Society, Vol. 135, Issue 15
  • DOI: 10.1021/ja312527x

Nanoscale elemental sensitivity study of Nd 2 Fe 14 B using absorption correlation tomography : Nanoscale Elemental Sensitivity Study of N
journal, August 2013

  • Kao, Thomas L.; Shi, Crystal Y.; Wang, Junyue
  • Microscopy Research and Technique, Vol. 76, Issue 11
  • DOI: 10.1002/jemt.22273

Visualization of Charge Distribution in a Lithium Battery Electrode
journal, June 2010

  • Liu, Jun; Kunz, Martin; Chen, Kai
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz100634n

3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography
journal, September 2003


Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
journal, July 2008

  • Delmas, C.; Maccario, M.; Croguennec, L.
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2230

Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
journal, August 2016


Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li x FePO 4
journal, June 2015


Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Intercalation Pathway in Many-Particle LiFePO 4 Electrode Revealed by Nanoscale State-of-Charge Mapping
journal, February 2013

  • Chueh, William C.; El Gabaly, Farid; Sugar, Joshua D.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl3031899

Crystal Orientation Tuning of LiFePO 4 Nanoplates for High Rate Lithium Battery Cathode Materials
journal, October 2012

  • Wang, Li; He, Xiangming; Sun, Wenting
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl3027839

The thermodynamic origin of hysteresis in insertion batteries
journal, April 2010

  • Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2730

Soft X-ray microscopy at a spatial resolution better than 15 nm
journal, June 2005

  • Chao, Weilun; Harteneck, Bruce D.; Liddle, J. Alexander
  • Nature, Vol. 435, Issue 7046
  • DOI: 10.1038/nature03719

Study of the LiFePO 4 /FePO 4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy
journal, November 2006

  • Laffont, L.; Delacourt, C.; Gibot, P.
  • Chemistry of Materials, Vol. 18, Issue 23
  • DOI: 10.1021/cm0617182

Sub-ångstrom resolution using aberration corrected electron optics
journal, August 2002

  • Batson, P. E.; Dellby, N.; Krivanek, O. L.
  • Nature, Vol. 418, Issue 6898
  • DOI: 10.1038/nature00972

Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes
journal, September 2014

  • Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4084

Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li x FePO 4 Nanoparticles from Surface Wetting and Coherency Strain
journal, September 2015

  • Welland, Michael J.; Karpeyev, Dmitry; O’Connor, Devin T.
  • ACS Nano, Vol. 9, Issue 10
  • DOI: 10.1021/acsnano.5b02555

Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
journal, September 2015

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9333

Lithium Batteries and Cathode Materials
journal, December 2004


Local Electronic Structure of Olivine Phases of LixFePO4.
journal, August 2007


Relaxed averaged alternating reflections for diffraction imaging
journal, August 2008


Dichotomy in the Lithiation Pathway of Ellipsoidal and Platelet LiFePO 4 Particles Revealed through Nanoscale Operando State-of-Charge Imaging
journal, May 2015

  • Li, Yiyang; Weker, Johanna Nelson; Gent, William E.
  • Advanced Functional Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adfm.201500286

Lithium Batteries and Cathode Materials
journal, December 2004


Nanoscale elemental sensitivity study of Nd 2 Fe 14 B using absorption correlation tomography : Nanoscale Elemental Sensitivity Study of N
journal, August 2013

  • Kao, Thomas L.; Shi, Crystal Y.; Wang, Junyue
  • Microscopy Research and Technique, Vol. 76, Issue 11
  • DOI: 10.1002/jemt.22273

Overview of olivines in lithium batteries for green transportation and energy storage
journal, January 2012

  • Zaghib, K.; Mauger, A.; Julien, C. M.
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 3
  • DOI: 10.1007/s10008-011-1629-8

Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography
journal, December 1970


Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li x FePO 4 Nanoparticles from Surface Wetting and Coherency Strain
journal, September 2015

  • Welland, Michael J.; Karpeyev, Dmitry; O’Connor, Devin T.
  • ACS Nano, Vol. 9, Issue 10
  • DOI: 10.1021/acsnano.5b02555

Study of the LiFePO 4 /FePO 4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy
journal, November 2006

  • Laffont, L.; Delacourt, C.; Gibot, P.
  • Chemistry of Materials, Vol. 18, Issue 23
  • DOI: 10.1021/cm0617182

Confirmation of the Domino-Cascade Model by LiFePO 4 /FePO 4 Precession Electron Diffraction
journal, October 2011

  • Brunetti, G.; Robert, D.; Bayle-Guillemaud, P.
  • Chemistry of Materials, Vol. 23, Issue 20
  • DOI: 10.1021/cm201783z

Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

Phase Transformation and Lithiation Effect on Electronic Structure of Li x FePO 4 : An In-Depth Study by Soft X-ray and Simulations
journal, August 2012

  • Liu, Xiaosong; Liu, Jun; Qiao, Ruimin
  • Journal of the American Chemical Society, Vol. 134, Issue 33
  • DOI: 10.1021/ja303225e

Local Electronic Structure of Olivine Phases of Li x FePO 4
journal, May 2007

  • Miao, Shu; Kocher, Michael; Rez, Peter
  • The Journal of Physical Chemistry A, Vol. 111, Issue 20
  • DOI: 10.1021/jp068605q

Visualization of Charge Distribution in a Lithium Battery Electrode
journal, June 2010

  • Liu, Jun; Kunz, Martin; Chen, Kai
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz100634n

Crystal Orientation Tuning of LiFePO 4 Nanoplates for High Rate Lithium Battery Cathode Materials
journal, October 2012

  • Wang, Li; He, Xiangming; Sun, Wenting
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl3027839

Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404285y

Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling
journal, July 2014

  • Yang, Feifei; Liu, Yijin; Martha, Surendra K.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl502090z

Coherency Strain and the Kinetics of Phase Separation in LiFePO 4 Nanoparticles
journal, February 2012

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204177u

Chemically sensitive structure-imaging with a scanning transmission electron microscope
journal, December 1988

  • Pennycook, S. J.; Boatner, L. A.
  • Nature, Vol. 336, Issue 6199
  • DOI: 10.1038/336565a0

Atomic-resolution chemical analysis using a scanning transmission electron microscope
journal, November 1993

  • Browning, N. D.; Chisholm, M. F.; Pennycook, S. J.
  • Nature, Vol. 366, Issue 6451
  • DOI: 10.1038/366143a0

Sub-ångstrom resolution using aberration corrected electron optics
journal, August 2002

  • Batson, P. E.; Dellby, N.; Krivanek, O. L.
  • Nature, Vol. 418, Issue 6898
  • DOI: 10.1038/nature00972

Erratum: corrigendum: Sub-ångstrom resolution using aberration corrected electron optics
journal, September 2002

  • Batson, P. E.; Dellby, N.; Krivanek, O. L.
  • Nature, Vol. 419, Issue 6902
  • DOI: 10.1038/nature01058

Soft X-ray microscopy at a spatial resolution better than 15 nm
journal, June 2005

  • Chao, Weilun; Harteneck, Bruce D.; Liddle, J. Alexander
  • Nature, Vol. 435, Issue 7046
  • DOI: 10.1038/nature03719

Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
journal, September 2015

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9333

The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
journal, February 2005

  • Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1335

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
journal, July 2008

  • Delmas, C.; Maccario, M.; Croguennec, L.
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2230

The thermodynamic origin of hysteresis in insertion batteries
journal, April 2010

  • Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens
  • Nature Materials, Vol. 9, Issue 5
  • DOI: 10.1038/nmat2730

Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes
journal, September 2014

  • Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4084

Nanoscale X-ray imaging
journal, December 2010


Chemical composition mapping with nanometre resolution by soft X-ray microscopy
journal, September 2014


Highly ordered staging structural interface between LiFePO4 and FePO4
journal, January 2012

  • Suo, Liumin; Han, Wenze; Lu, Xia
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 16
  • DOI: 10.1039/c2cp40610a

Electronic structure of phospho-olivines LixFePO4 (x=0,1) from soft-x-ray-absorption and -emission spectroscopies
journal, November 2005

  • Augustsson, A.; Zhuang, G. V.; Butorin, S. M.
  • The Journal of Chemical Physics, Vol. 123, Issue 18
  • DOI: 10.1063/1.2107387

Relaxed averaged alternating reflections for diffraction imaging
journal, November 2004


Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Beyond crystallography: Diffractive imaging using coherent x-ray light sources
journal, April 2015


Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
journal, August 2016


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Theory of Nucleation in Phase-separating Nanoparticles
text, January 2013


Works referencing / citing this record:

Understanding Challenges of Cathode Materials for Sodium‐Ion Batteries using Synchrotron‐Based X‐Ray Absorption Spectroscopy
journal, July 2019

  • Chen, Mingzhe; Chou, Shu‐Lei; Dou, Shi‐Xue
  • Batteries & Supercaps, Vol. 2, Issue 10
  • DOI: 10.1002/batt.201900054

Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials
journal, January 2020


3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods
journal, September 2019


Oxygen-diffusion-driven oxidation behavior and tracking areas visualized by X-ray spectro-ptychography with unsupervised learning
journal, April 2019


X-ray ptychography on low-dimensional hard-condensed matter materials
journal, March 2019

  • Shi, Xiaowen; Burdet, Nicolas; Chen, Bo
  • Applied Physics Reviews, Vol. 6, Issue 1
  • DOI: 10.1063/1.5045131

Laboratory setup for extreme ultraviolet coherence tomography driven by a high-harmonic source
journal, November 2019

  • Nathanael, Jan; Wünsche, Martin; Fuchs, Silvio
  • Review of Scientific Instruments, Vol. 90, Issue 11
  • DOI: 10.1063/1.5102129

Three-dimensional focal stack imaging in scanning transmission X-ray microscopy with an improved reconstruction algorithm
journal, January 2019


Advanced denoising for X-ray ptychography
text, January 2019

  • Chang, Huibin; Enfedaque, Pablo; Zhang, Jie
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-02182

Coupled ptychography and tomography algorithm improves reconstruction of experimental data
text, January 2019

  • Kahnt, Maik; Becher, Johannes; Brückner, Dennis
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-03482

Advanced denoising for X-ray ptychography
journal, January 2019

  • Chang, Huibin; Enfedaque, Pablo; Zhang, Jie
  • Optics Express, Vol. 27, Issue 8
  • DOI: 10.1364/OE.27.010395

X-ray microscopy
journal, February 2017


X-ray microscopy
journal, July 1965


Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials
journal, January 2020


3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods
journal, September 2019