DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Variable convergence liquid layer implosions on the National Ignition Facility

Abstract

Liquid layer implosions using the “wetted foam” technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. In this paper, we report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ~ 12, but we observe a significant discrepancy at CR ~ 20. Finally, this may be due to suppressed hot-spot formation or an anomalous energy loss mechanism.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [2];  [1];  [1]; ORCiD logo [2];  [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3];  [2];  [1];  [3];  [2];  [3];  [2] more »; ORCiD logo [1];  [2];  [2]; ORCiD logo [1]; ORCiD logo [2];  [1];  [3];  [2];  [1];  [2];  [1];  [2]; ORCiD logo [1] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
OSTI Identifier:
1435526
Alternate Identifier(s):
OSTI ID: 1426844
Report Number(s):
LA-UR-17-29966
Journal ID: ISSN 1070-664X; TRN: US1900065
Grant/Contract Number:  
AC52-06NA25396; AC52-07NA27344; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; plasma confinement; spectra; hydrodynamics; Doppler effect; x-rays; natural gas; tectonophysics; thermal conductivity

Citation Formats

Zylstra, A. B., Yi, S. A., Haines, B. M., Olson, R. E., Leeper, R. J., Braun, T., Biener, J., Kline, J. L., Batha, S. H., Berzak Hopkins, L., Bhandarkar, S., Bradley, P. A., Crippen, J., Farrell, M., Fittinghoff, D., Herrmann, H. W., Huang, H., Khan, S., Kong, C., Kozioziemski, B. J., Kyrala, G. A., Ma, T., Meezan, N. B., Merrill, F., Nikroo, A., Peterson, R. R., Rice, N., Sater, J. D., Shah, R. C., Stadermann, M., Volegov, P., Walters, C., and Wilson, D. C. Variable convergence liquid layer implosions on the National Ignition Facility. United States: N. p., 2018. Web. doi:10.1063/1.5016349.
Zylstra, A. B., Yi, S. A., Haines, B. M., Olson, R. E., Leeper, R. J., Braun, T., Biener, J., Kline, J. L., Batha, S. H., Berzak Hopkins, L., Bhandarkar, S., Bradley, P. A., Crippen, J., Farrell, M., Fittinghoff, D., Herrmann, H. W., Huang, H., Khan, S., Kong, C., Kozioziemski, B. J., Kyrala, G. A., Ma, T., Meezan, N. B., Merrill, F., Nikroo, A., Peterson, R. R., Rice, N., Sater, J. D., Shah, R. C., Stadermann, M., Volegov, P., Walters, C., & Wilson, D. C. Variable convergence liquid layer implosions on the National Ignition Facility. United States. https://doi.org/10.1063/1.5016349
Zylstra, A. B., Yi, S. A., Haines, B. M., Olson, R. E., Leeper, R. J., Braun, T., Biener, J., Kline, J. L., Batha, S. H., Berzak Hopkins, L., Bhandarkar, S., Bradley, P. A., Crippen, J., Farrell, M., Fittinghoff, D., Herrmann, H. W., Huang, H., Khan, S., Kong, C., Kozioziemski, B. J., Kyrala, G. A., Ma, T., Meezan, N. B., Merrill, F., Nikroo, A., Peterson, R. R., Rice, N., Sater, J. D., Shah, R. C., Stadermann, M., Volegov, P., Walters, C., and Wilson, D. C. Mon . "Variable convergence liquid layer implosions on the National Ignition Facility". United States. https://doi.org/10.1063/1.5016349. https://www.osti.gov/servlets/purl/1435526.
@article{osti_1435526,
title = {Variable convergence liquid layer implosions on the National Ignition Facility},
author = {Zylstra, A. B. and Yi, S. A. and Haines, B. M. and Olson, R. E. and Leeper, R. J. and Braun, T. and Biener, J. and Kline, J. L. and Batha, S. H. and Berzak Hopkins, L. and Bhandarkar, S. and Bradley, P. A. and Crippen, J. and Farrell, M. and Fittinghoff, D. and Herrmann, H. W. and Huang, H. and Khan, S. and Kong, C. and Kozioziemski, B. J. and Kyrala, G. A. and Ma, T. and Meezan, N. B. and Merrill, F. and Nikroo, A. and Peterson, R. R. and Rice, N. and Sater, J. D. and Shah, R. C. and Stadermann, M. and Volegov, P. and Walters, C. and Wilson, D. C.},
abstractNote = {Liquid layer implosions using the “wetted foam” technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. In this paper, we report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ~ 12, but we observe a significant discrepancy at CR ~ 20. Finally, this may be due to suppressed hot-spot formation or an anomalous energy loss mechanism.},
doi = {10.1063/1.5016349},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {Mon Mar 19 00:00:00 EDT 2018},
month = {Mon Mar 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Foam-lined subscale capsule radial ‘pie’ diagram (top left) and example capsule image (top right). Bottom: filled capsule in the NIF cryogenic positioner.

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules
journal, July 2017

  • Haines, Brian M.; Yi, S. A.; Olson, R. E.
  • Physics of Plasmas, Vol. 24, Issue 7
  • DOI: 10.1063/1.4993065

Areal Density Measurement of Imploded Cryogenic Target by Energy Peak Shift of DD-Produced Protons
journal, October 1995


First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Deuterium-Tritium Fuel Layer Formation for the National Ignition Facility
journal, January 2011

  • Kozioziemski, B. J.; Mapoles, E. R.; Sater, J. D.
  • Fusion Science and Technology, Vol. 59, Issue 1
  • DOI: 10.13182/FST10-3697

First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility
journal, December 2016


A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Diagnosing inertial confinement fusion gamma ray physics (invited)
journal, October 2010

  • Herrmann, H. W.; Hoffman, N.; Wilson, D. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495770

Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules
journal, September 2013

  • Olson, R. E.; Leeper, R. J.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4822342

Cryogenic Target System for Hydrogen Layering
journal, February 2016

  • Parham, T.; Kozioziemski, B.; Atkinson, D.
  • Fusion Science and Technology, Vol. 69, Issue 1
  • DOI: 10.13182/FST15-162

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Advances in x-ray framing cameras at the National Ignition Facility to improve quantitative precision in x-ray imaging
journal, February 2016

  • Benedetti, L. R.; Holder, J. P.; Perkins, M.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941754

The National Ignition Facility: enabling fusion ignition for the 21st century
journal, November 2004


Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Backscatter measurements for NIF ignition targets (invited)
journal, October 2010

  • Moody, J. D.; Datte, P.; Krauter, K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491035

Supercritical Drying of Wet Gel Layers Generated Inside ICF Ablator Shells
journal, December 2017


Neutron source reconstruction from pinhole imaging at National Ignition Facility
journal, February 2014

  • Volegov, P.; Danly, C. R.; Fittinghoff, D. N.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865456

Gated x-ray detector for the National Ignition Facility
journal, October 2006

  • Oertel, John A.; Aragonez, Robert; Archuleta, Tom
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227439

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra
journal, July 2014


Wetted foam liquid fuel ICF target experiments
journal, May 2016


Symmetry control in subscale near-vacuum hohlraums
journal, May 2016

  • Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950825

Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries
journal, February 2013


Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums
journal, June 2015

  • Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921947

In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres
journal, January 2016

  • Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 4
  • DOI: 10.1021/acsami.5b10357

Radioactively induced sublimation in solid tritium
journal, March 1988


Direct drive cryogenic ICF capsules employing D-T wetted foam
journal, March 1987


Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility
journal, August 2016


Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments
journal, November 2015

  • Hatarik, R.; Sayre, D. B.; Caggiano, J. A.
  • Journal of Applied Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.4935455

One-megajoule, wetted-foam target-design performance for the National Ignition Facility
journal, May 2007

  • Collins, T. J. B.; Marozas, J. A.; Betti, R.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2709859

The neutron imaging diagnostic at NIF (invited)
journal, October 2012

  • Merrill, F. E.; Bower, D.; Buckles, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4739242

High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
journal, May 2017

  • Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4981222

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
journal, October 2010

  • Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3492351

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

The RAGE radiation-hydrodynamic code
journal, October 2008


Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)
conference, October 2012

  • Khan, S. F.; Bell, P. M.; Bradley, D. K.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.930032

Temperature effects on the formation of a uniform liquid layer of hydrogen isotopes inside a spherical cryogenic ICF target
journal, April 1983

  • Mok, L.; Kim, K.; Bernat, T. P.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 1, Issue 2
  • DOI: 10.1116/1.572146

Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility
journal, January 2018


A new approach to foam-lined indirect-drive NIF ignition targets
journal, April 2012


Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Some Criteria for a Power Producing Thermonuclear Reactor
journal, January 1957


X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Works referencing / citing this record:

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020


Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry
journal, September 2018

  • Ali, S. J.; Celliers, P. M.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5047943

Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions
journal, January 2019

  • Haines, Brian M.; Olson, R. E.; Sweet, W.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5080262

Effects of thermal conductivity of liquid layer in NIF wetted foam experiments
journal, September 2019

  • Dhakal, Tilak R.; Haines, Brian M.; Olson, Richard E.
  • Physics of Plasmas, Vol. 26, Issue 9
  • DOI: 10.1063/1.5112768

Kinetic physics in ICF: present understanding and future directions
journal, April 2018

  • Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 6
  • DOI: 10.1088/1361-6587/aab79f

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020