skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Criegee intermediates and their impacts on the troposphere

Abstract

We report Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 104 cm-3 to 1 × 105 cm-3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found to be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO2 to form SO3, which can go on to form a significant amount of H2SO4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. Lastly, the sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures,more » that can lead to nucleation and SOA formation over terrestrial regions.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1]
  1. University of Bristol (United Kingdom). School of Chemistry
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Laboratory
  3. Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Research Facility
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1426808
Report Number(s):
SAND-2018-1551J
Journal ID: ISSN 2050-7887; ESPICZ; 660688
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Science: Processes & Impacts
Additional Journal Information:
Journal Volume: 20; Journal Issue: 3; Journal ID: ISSN 2050-7887
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES

Citation Formats

Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., and Shallcross, D. E. Criegee intermediates and their impacts on the troposphere. United States: N. p., 2018. Web. doi:10.1039/C7EM00585G.
Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., & Shallcross, D. E. Criegee intermediates and their impacts on the troposphere. United States. doi:10.1039/C7EM00585G.
Khan, M. A. H., Percival, C. J., Caravan, R. L., Taatjes, C. A., and Shallcross, D. E. Thu . "Criegee intermediates and their impacts on the troposphere". United States. doi:10.1039/C7EM00585G. https://www.osti.gov/servlets/purl/1426808.
@article{osti_1426808,
title = {Criegee intermediates and their impacts on the troposphere},
author = {Khan, M. A. H. and Percival, C. J. and Caravan, R. L. and Taatjes, C. A. and Shallcross, D. E.},
abstractNote = {We report Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 104 cm-3 to 1 × 105 cm-3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found to be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO2 to form SO3, which can go on to form a significant amount of H2SO4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. Lastly, the sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.},
doi = {10.1039/C7EM00585G},
journal = {Environmental Science: Processes & Impacts},
number = 3,
volume = 20,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Formation of a primary ozonide followed by decomposition to a carbonyl and Criegee intermediate

Save / Share:

Works referenced in this record:

Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO 2
journal, September 2012

  • Berndt, Torsten; Jokinen, Tuija; Mauldin, Roy L.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 19
  • DOI: 10.1021/jz301158u

Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry
journal, September 2017

  • Berndt, Torsten; Herrmann, Hartmut; Kurtén, Theo
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b05849

Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene
journal, January 2016

  • Nguyen, Tran B.; Tyndall, Geoffrey S.; Crounse, John D.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 15
  • DOI: 10.1039/C6CP00053C

The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments
journal, June 1999


Competing atmospheric reactions of CH 2 OO with SO 2 and water vapour
journal, January 2014

  • Berndt, Torsten; Voigtländer, Jens; Stratmann, Frank
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 36
  • DOI: 10.1039/C4CP02345E

Absolute Ultraviolet Absorption Spectrum of a Criegee Intermediate CH 2 OO
journal, November 2013

  • Sheps, Leonid
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 24
  • DOI: 10.1021/jz402191w

Die Ozonisierung des 9,10-Oktalins
journal, July 1949


Reactions of criegee intermediates in the gas phase
journal, January 1994


Temperature- and Pressure-Dependent Kinetics of CH 2 OO + CH 3 COCH 3 and CH 2 OO + CH 3 CHO: Direct Measurements and Theoretical Analysis : TEMPERATURE- AND PRESSURE-DEPENDENT KINETICS OF CH
journal, May 2016

  • Elsamra, Rehab M. I.; Jalan, Amrit; Buras, Zachary J.
  • International Journal of Chemical Kinetics, Vol. 48, Issue 8
  • DOI: 10.1002/kin.21007

The global budgets of organic hydroperoxides for present and pre-industrial scenarios
journal, June 2015


Production of stabilized Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes: 1. Ethene, trans -2-butene, and 2,3-dimethyl-2-butene
journal, December 2001

  • Hasson, Alam S.; Orzechowska, Grazyna; Paulson, Suzanne E.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D24
  • DOI: 10.1029/2001JD000597

Computational Studies of the Isomerization and Hydration Reactions of Acetaldehyde Oxide and Methyl Vinyl Carbonyl Oxide
journal, September 2010

  • Kuwata, Keith T.; Hermes, Matthew R.; Carlson, Matthew J.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 34
  • DOI: 10.1021/jp105358v

Temperature-Dependent Rate Coefficients for the Reaction of CH 2 OO with Hydrogen Sulfide
journal, January 2017

  • Smith, Mica C.; Chao, Wen; Kumar, Manoj
  • The Journal of Physical Chemistry A, Vol. 121, Issue 5
  • DOI: 10.1021/acs.jpca.6b12303

Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene
journal, January 2017

  • Decker, Z. C. J.; Au, K.; Vereecken, L.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 12
  • DOI: 10.1039/C6CP08602K

A Computational Re-examination of the Criegee Intermediate–Sulfur Dioxide Reaction
journal, October 2015

  • Kuwata, Keith T.; Guinn, Emily J.; Hermes, Matthew R.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 41
  • DOI: 10.1021/acs.jpca.5b06565

Oxidation of Atmospheric SO2 by Products of the Ozone–Olefin Reaction
journal, April 1971


Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds
journal, January 1996


Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V.   IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry
journal, May 1997

  • Atkinson, R.; Baulch, D. L.; Cox, R. A.
  • Journal of Physical and Chemical Reference Data, Vol. 26, Issue 3
  • DOI: 10.1063/1.556011

Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers
journal, January 2006

  • Sadezky, A.; Chaimbault, P.; Mellouki, A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5009-2006

A new atmospherically relevant oxidant of sulphur dioxide
journal, August 2012

  • Mauldin III, R. L.; Berndt, T.; Sipilä, M.
  • Nature, Vol. 488, Issue 7410
  • DOI: 10.1038/nature11278

Competition between H 2 O and (H 2 O) 2 reactions with CH 2 OO/CH 3 CHOO
journal, January 2016

  • Lin, Liang-Chun; Chang, Hung-Tzu; Chang, Chien-Hsun
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 6
  • DOI: 10.1039/C5CP06446E

Formation of OH radicals in the gas phase ozonolysis of alkenes: the unexpected role of carbonyl oxides
journal, April 1996


The reaction of Criegee intermediate CH 2 OO with water dimer: primary products and atmospheric impact
journal, January 2017

  • Sheps, Leonid; Rotavera, Brandon; Eskola, Arkke J.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 33
  • DOI: 10.1039/C7CP03265J

Mechanisms of the irreversible inactivation of horseradish peroxidase caused by hydroxymethylhydroperoxide
journal, February 1973


Oxidation of SO 2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations
journal, January 2013

  • Boy, M.; Mogensen, D.; Smolander, S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 7
  • DOI: 10.5194/acp-13-3865-2013

Global modeling of the C1–C3 alkyl nitrates using STOCHEM-CRI
journal, December 2015


The Reaction between CH 3 O 2 and OH Radicals: Product Yields and Atmospheric Implications
journal, February 2017

  • Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa
  • Environmental Science & Technology, Vol. 51, Issue 4
  • DOI: 10.1021/acs.est.6b06265

Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation
journal, January 2013

  • Percival, Carl J.; Welz, Oliver; Eskola, Arkke J.
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00048f

Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products
journal, November 2017

  • Green, Amy M.; Barber, Victoria P.; Fang, Yi
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 47
  • DOI: 10.1073/pnas.1715014114

Relatively Selective Production of the Simplest Criegee Intermediate in a CH 4 /O 2 Electric Discharge: Kinetic Analysis of a Plausible Mechanism
journal, November 2014

  • Nguyen, Thanh Lam; McCarthy, Michael C.; Stanton, John F.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/jp510554g

Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications
journal, March 2014

  • Welz, Oliver; Eskola, Arkke J.; Sheps, Leonid
  • Angewandte Chemie International Edition, Vol. 53, Issue 18
  • DOI: 10.1002/anie.201400964

Observation of hydroxymethyl hydroperoxide in a reaction system containing CH 2 OO and water vapor through pure rotational spectroscopy
journal, October 2015

  • Nakajima, Masakazu; Endo, Yasuki
  • The Journal of Chemical Physics, Vol. 143, Issue 16
  • DOI: 10.1063/1.4933433

Products of Criegee intermediate reactions with NO 2 : experimental measurements and tropospheric implications
journal, January 2017

  • Caravan, Rebecca L.; Khan, M. Anwar H.; Rotavera, Brandon
  • Faraday Discussions, Vol. 200
  • DOI: 10.1039/C7FD00007C

Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH 2 OO Reaction with Water Dimer
journal, June 2015

  • Smith, Mica C.; Chang, Chun-Hung; Chao, Wen
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 14
  • DOI: 10.1021/acs.jpclett.5b01109

Oligomerization Reaction of the Criegee Intermediate Leads to Secondary Organic Aerosol Formation in Ethylene Ozonolysis
journal, November 2013

  • Sakamoto, Yosuke; Inomata, Satoshi; Hirokawa, Jun
  • The Journal of Physical Chemistry A, Vol. 117, Issue 48
  • DOI: 10.1021/jp408672m

Mechanism of HO x Formation in the Gas-Phase Ozone−Alkene Reaction. 1. Direct, Pressure-Dependent Measurements of Prompt OH Yields
journal, March 2001

  • Kroll, Jesse H.; Clarke, James S.; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 105, Issue 9
  • DOI: 10.1021/jp002121r

The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany
journal, January 2014

  • Bonn, B.; Bourtsoukidis, E.; Sun, T. S.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10823-2014

Infrared Detection of Criegee Intermediates Formed during the Ozonolysis of β-Pinene and Their Reactivity towards Sulfur Dioxide
journal, January 2014

  • Ahrens, Jennifer; Carlsson, Philip T. M.; Hertl, Nils
  • Angewandte Chemie International Edition, Vol. 53, Issue 3
  • DOI: 10.1002/anie.201307327

A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer
journal, January 2004

  • Ryzhkov, Andrew B.; Ariya, Parisa A.
  • Physical Chemistry Chemical Physics, Vol. 6, Issue 21
  • DOI: 10.1039/b408414d

Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO 2
journal, August 2015

  • Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 35
  • DOI: 10.1073/pnas.1513149112

Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit
journal, January 2008

  • Sadezky, A.; Winterhalter, R.; Kanawati, B.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 10
  • DOI: 10.5194/acp-8-2667-2008

Temperature dependence of the reaction of anti-CH 3 CHOO with water vapor
journal, January 2016

  • Lin, Liang-Chun; Chao, Wen; Chang, Chun-Hung
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 40
  • DOI: 10.1039/C6CP05171E

Direct Determination of the Simplest Criegee Intermediate (CH 2 OO) Self Reaction Rate
journal, June 2014

  • Buras, Zachary J.; Elsamra, Rehab M. I.; Green, William H.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 13
  • DOI: 10.1021/jz5008406

Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO
journal, April 2013


Direct Kinetic Measurements of Reactions between the Simplest Criegee Intermediate CH 2 OO and Alkenes
journal, March 2014

  • Buras, Zachary J.; Elsamra, Rehab M. I.; Jalan, Amrit
  • The Journal of Physical Chemistry A, Vol. 118, Issue 11
  • DOI: 10.1021/jp4118985

Direct observation of OH production from the ozonolysis of olefins
journal, January 1998

  • Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.
  • Geophysical Research Letters, Vol. 25, Issue 1
  • DOI: 10.1029/97GL53560

A kinetic study of the CH 2 OO Criegee intermediate reaction with SO 2 , (H 2 O) 2 , CH 2 I 2 and I atoms using OH laser induced fluorescence
journal, January 2017

  • Liu, Yiqiang; Liu, Fenghua; Liu, Siyue
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 31
  • DOI: 10.1039/C7CP04336H

Kinetics of the unimolecular reaction of CH 2 OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions
journal, January 2015

  • Berndt, Torsten; Kaethner, Ralf; Voigtländer, Jens
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 30
  • DOI: 10.1039/C5CP02224J

Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO 2 , H 2 O and dimethyl sulfide
journal, January 2015

  • Newland, M. J.; Rickard, A. R.; Vereecken, L.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9521-2015

Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate
journal, March 2014


NO3 radical production from the reaction between the Criegee intermediate CH2OO and NO2
journal, January 2013

  • Ouyang, Bin; McLeod, Matthew W.; Jones, Roderic L.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 40
  • DOI: 10.1039/c3cp53024h

The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere
journal, January 2012

  • Vereecken, L.; Harder, H.; Novelli, A.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 42
  • DOI: 10.1039/c2cp42300f

Detailed mechanism of the CH 2 I + O 2 reaction: Yield and self-reaction of the simplest Criegee intermediate CH 2 OO
journal, September 2014

  • Ting, Wei-Lun; Chang, Chun-Hung; Lee, Yu-Fang
  • The Journal of Chemical Physics, Vol. 141, Issue 10
  • DOI: 10.1063/1.4894405

Relative Reactivity Measurements of Stabilized CH 2 OO, Produced by Ethene Ozonolysis, Toward Acetic Acid and Water Vapor Using Chemical Ionization Mass Spectrometry
journal, August 2017

  • Yajima, Ryoji; Sakamoto, Yosuke; Inomata, Satoshi
  • The Journal of Physical Chemistry A, Vol. 121, Issue 34
  • DOI: 10.1021/acs.jpca.7b05065

Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH 2 OO with HNO 3 and Its Catalytic Conversion to OH and HCO
journal, May 2017

  • Raghunath, P.; Lee, Yuan-Pern; Lin, M. C.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 20
  • DOI: 10.1021/acs.jpca.7b02196

Stable sulphate clusters as a source of new atmospheric particles
journal, March 2000

  • Kulmala, Markku; Pirjola, Liisa; Mäkelä, Jyrki M.
  • Nature, Vol. 404, Issue 6773
  • DOI: 10.1038/35003550

Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: Overview of the PUMA Consortium project
journal, May 2006


Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer
journal, January 2000


Summertime photochemical ozone formation in Santiago, Chile
journal, December 2009


Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour
journal, May 1997


Energetics, Kinetics, and Product Distributions of the Reactions of Ozone with Ethene and 2,3-Dimethyl-2-butene
journal, December 1997

  • Olzmann, M.; Kraka, E.; Cremer, D.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 49
  • DOI: 10.1021/jp971663e

Atmospheric Formation of OH Radicals and H2O2 from Alkene Ozonolysis under Humid Conditions
journal, February 2002


Ozonolysis Fragment Quenching by Nitrate Formation:  The Pressure Dependence of Prompt OH Radical Formation
journal, October 2004

  • Presto, Albert A.; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 42
  • DOI: 10.1021/jp047162s

Gas-phase ozonolysis of ethene in the presence of carbonyl-oxide scavengers
journal, September 1997


A Computational Study of the Oxidation of SO 2 to SO 3 by Gas-Phase Organic Oxidants
journal, August 2011

  • Kurtén, Theo; Lane, Joseph R.; Jørgensen, Solvejg
  • The Journal of Physical Chemistry A, Vol. 115, Issue 31
  • DOI: 10.1021/jp203907d

Mechanism of Ozonolysis
journal, November 1975

  • Criegee, Rudolf
  • Angewandte Chemie International Edition in English, Vol. 14, Issue 11
  • DOI: 10.1002/anie.197507451

Radical Product Yields from the Ozonolysis of Short Chain Alkenes under Atmospheric Boundary Layer Conditions
journal, November 2013

  • Alam, Mohammed S.; Rickard, Andrew R.; Camredon, Marie
  • The Journal of Physical Chemistry A, Vol. 117, Issue 47
  • DOI: 10.1021/jp408745h

Mechanism of HO x Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus Thermal Dissociation of Carbonyl Oxides to Form OH
journal, May 2001

  • Kroll, Jesse H.; Sahay, Shailesh R.; Anderson, James G.
  • The Journal of Physical Chemistry A, Vol. 105, Issue 18
  • DOI: 10.1021/jp004136v

Determination of Rate Constants and Product Branching Ratios for the Reactions of CH 3 O 2 and CH 3 O with Cl Atoms at Room Temperature
journal, August 1995

  • Jungkamp, T. P. W.; Kukui, A.; Schindler, R. N.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 99, Issue 8
  • DOI: 10.1002/bbpc.199500031

Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water
journal, January 2011

  • Anglada, J. M.; González, J.; Torrent-Sucarrat, M.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 28
  • DOI: 10.1039/c1cp20872a

Unimolecular Decomposition Rate of the Criegee Intermediate (CH 3 ) 2 COO Measured Directly with UV Absorption Spectroscopy
journal, February 2016

  • Smith, Mica C.; Chao, Wen; Takahashi, Kaito
  • The Journal of Physical Chemistry A, Vol. 120, Issue 27
  • DOI: 10.1021/acs.jpca.5b12124

Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor
journal, January 2015


Measuring Rate Constants for Reactions of the Simplest Criegee Intermediate (CH 2 OO) by Monitoring the OH Radical
journal, January 2014

  • Liu, Yingdi; Bayes, Kyle D.; Sander, Stanley P.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 4
  • DOI: 10.1021/jp407058b

Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH 3 ) 2 COO
journal, December 2016

  • Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpca.6b07810

Role of stabilized Criegee Intermediates in the formation of atmospheric sulfate in eastern United States
journal, November 2013


A kinetic study of the CH 2 OO Criegee intermediate self-reaction, reaction with SO 2 and unimolecular reaction using cavity ring-down spectroscopy
journal, January 2015

  • Chhantyal-Pun, Rabi; Davey, Anthony; Shallcross, Dudley E.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP04198D

The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere
journal, January 2008

  • Johnson, David; Marston, George
  • Chemical Society Reviews, Vol. 37, Issue 4
  • DOI: 10.1039/b704260b

Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2
journal, January 2012


Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone
journal, January 2012

  • Taatjes, Craig A.; Welz, Oliver; Eskola, Arkke J.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 30
  • DOI: 10.1039/c2cp40294g

Potential Role of Stabilized Criegee Radicals in Sulfuric Acid Production in a High Biogenic VOC Environment
journal, February 2015

  • Kim, Saewung; Guenther, Alex; Lefer, Barry
  • Environmental Science & Technology, Vol. 49, Issue 6
  • DOI: 10.1021/es505793t

Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO 3 : Kinetics and Atmospheric Implications
journal, July 2016

  • Foreman, Elizabeth S.; Kapnas, Kara M.; Murray, Craig
  • Angewandte Chemie International Edition, Vol. 55, Issue 35
  • DOI: 10.1002/anie.201604662

Reaction of Stabilized Criegee Intermediates from Ozonolysis of Limonene with Water: Ab Initio and DFT Study
journal, March 2013

  • Jiang, Lei; Lan, Ru; Xu, Yi-Sheng
  • International Journal of Molecular Sciences, Vol. 14, Issue 3
  • DOI: 10.3390/ijms14035784

Measurement of Absolute Unimolecular and Bimolecular Rate Constants for CH 3 CHOO Generated by the trans -2-Butene Reaction with Ozone in the Gas Phase
journal, November 2000

  • Fenske, Jill D.; Hasson, Alam S.; Ho, Andy W.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 44
  • DOI: 10.1021/jp0016636

Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis
journal, January 2014

  • Taatjes, Craig A.; Shallcross, Dudley E.; Percival, Carl J.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 5
  • DOI: 10.1039/c3cp52842a

Direct observation of OH formation from stabilised Criegee intermediates
journal, January 2014

  • Novelli, A.; Vereecken, L.; Lelieveld, J.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 37
  • DOI: 10.1039/C4CP02719A

Kinetics and energetics of the criegee intermediate in the gas phase. I. The criegee intermediate in ozone-alkene reactions
journal, March 1982

  • Herron, John T.; Martinez, Richard I.; Huie, Robert E.
  • International Journal of Chemical Kinetics, Vol. 14, Issue 3
  • DOI: 10.1002/kin.550140302

Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO 2
journal, January 2016


Pressure Dependence of Stabilized Criegee Intermediate Formation from a Sequence of Alkenes
journal, May 2011

  • Drozd, Greg T.; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 17
  • DOI: 10.1021/jp2001089

Theoretical study of the reactions of Criegee intermediates with ozone, alkylhydroperoxides, and carbon monoxide
journal, January 2015

  • Vereecken, L.; Rickard, A. R.; Newland, M. J.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 37
  • DOI: 10.1039/C5CP03862F

The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe
journal, January 2005

  • Fiedler, V.; Dal Maso, M.; Boy, M.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 7
  • DOI: 10.5194/acp-5-1773-2005

Temperature-Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates
journal, June 2017

  • Chhantyal-Pun, Rabi; McGillen, Max R.; Beames, Joseph M.
  • Angewandte Chemie International Edition, Vol. 56, Issue 31
  • DOI: 10.1002/anie.201703700

Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument
journal, January 2017

  • Novelli, Anna; Hens, Korbinian; Tatum Ernest, Cheryl
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 12
  • DOI: 10.5194/acp-17-7807-2017

Missing SO 2 oxidant in the coastal atmosphere? – observations from high-resolution measurements of OH and atmospheric sulfur compounds
journal, January 2014


Effects of Stabilized Criegee Intermediate and OH Radical Scavengers on Aerosol Formation from Reactions of β-Pinene with O 3
journal, November 2003

  • Docherty, Kenneth S.; Ziemann, Paul J.
  • Aerosol Science and Technology, Vol. 37, Issue 11
  • DOI: 10.1080/02786820300930

Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry
journal, March 2014

  • Su, Yu-Te; Lin, Hui-Yu; Putikam, Raghunath
  • Nature Chemistry, Vol. 6, Issue 6
  • DOI: 10.1038/nchem.1890

Criegee Intermediate–Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere
journal, December 2017


Reaction between CH 3 O 2 and BrO Radicals: A New Source of Upper Troposphere Lower Stratosphere Hydroxyl Radicals
journal, November 2014

  • Shallcross, Dudley E.; Leather, Kimberley E.; Bacak, Asan
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp5108203

Direct Measurement of OH Radicals from Ozonolysis of Selected Alkenes:  A EUPHORE Simulation Chamber Study
journal, December 2001

  • Siese, Manfred; Becker, Karl H.; Brockmann, Klaus J.
  • Environmental Science & Technology, Vol. 35, Issue 23
  • DOI: 10.1021/es010150p

Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO 2 and organic acids
journal, January 2014


Multiphase reactivity of gaseous hydroperoxide oligomers produced from isoprene ozonolysis in the presence of acidified aerosols
journal, March 2017


Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water
journal, October 2016

  • Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b08655

Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air
journal, January 2015

  • Zhao, Yue; Wingen, Lisa M.; Perraud, Véronique
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 19
  • DOI: 10.1039/C5CP01171J

Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates
journal, January 2017

  • Vereecken, L.; Novelli, A.; Taraborrelli, D.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 47
  • DOI: 10.1039/C7CP05541B

UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH 3 CHOO
journal, January 2014

  • Sheps, Leonid; Scully, Ashley M.; Au, Kendrew
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 48
  • DOI: 10.1039/C4CP04408H

Infrared Absorption Spectrum of the Simplest Criegee Intermediate CH2OO
journal, April 2013


Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes
journal, January 1991


Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products
journal, February 2016

  • Fang, Yi; Liu, Fang; Barber, Victoria P.
  • The Journal of Chemical Physics, Vol. 144, Issue 6
  • DOI: 10.1063/1.4941768

Kinetics of CH 2 OO reactions with SO 2 , NO 2 , NO, H 2 O and CH 3 CHO as a function of pressure
journal, January 2014

  • Stone, Daniel; Blitz, Mark; Daubney, Laura
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 3
  • DOI: 10.1039/C3CP54391A

Direct evidence for a substantive reaction between the Criegee intermediate, CH 2 OO, and the water vapour dimer
journal, January 2015

  • Lewis, Tom R.; Blitz, Mark A.; Heard, Dwayne E.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 7
  • DOI: 10.1039/C4CP04750H

Theoretical Study of the Reaction of Carbonyl Oxide with Nitrogen Dioxide: CH 2 OO + NO 2 : THEORETICAL STUDY OF THE REACTION OF CARBONYL OXIDE WITH NITROGEN DIOXIDE
journal, August 2017

  • Vereecken, L.; Nguyen, H. M. T.
  • International Journal of Chemical Kinetics, Vol. 49, Issue 10
  • DOI: 10.1002/kin.21112

Gas-Phase Ozonolysis of Alkenes:  Formation of OH from Anti Carbonyl Oxides
journal, July 2002

  • Kroll, Jesse H.; Donahue, Neil M.; Cee, Victor J.
  • Journal of the American Chemical Society, Vol. 124, Issue 29
  • DOI: 10.1021/ja0266060

A large and ubiquitous source of atmospheric formic acid
journal, January 2015

  • Millet, D. B.; Baasandorj, M.; Farmer, D. K.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 11
  • DOI: 10.5194/acp-15-6283-2015