skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on February 26, 2019

Title: Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases

In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.
Authors:
 [1] ;  [2] ;  [3] ; ORCiD logo [4] ; ORCiD logo [5] ; ORCiD logo [6] ;  [7] ;  [8] ; ORCiD logo [9] ;  [10] ;  [11] ;  [12] ; ORCiD logo [13] ;  [14] ; ORCiD logo [15] ;  [16] ;  [17] ;  [1] ;  [18] ;  [9] more »;  [19] ;  [20] ; ORCiD logo [21] ;  [22] ;  [23] ; ORCiD logo [17] ;  [23] ; ORCiD logo [24] « less
  1. Univ. Paris-Saclay, Gif-sur-Yvette (France). Lab. des Sciences du Climat et de l'Environnement
  2. APS Antriebs-, Pruf- und. Steuertechnik GmbH, Rosdorf (Germany)
  3. Wageningen Univ. (Netherlands). Dept. of Environmental Sciences
  4. Univ. Paris-Saclay, Gif-sur-Yvette (France). Lab. des Sciences du Climat et de l'Environnement; Univ. Paris-Saclay, Cachan (France). Dept. Genie Mecanique
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst.
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst.
  7. Univ. Paris-Saclay, Orsay (France). Geosciences Paris Sud, GEOPS/IPSL
  8. MFRDC, Orvault (France)
  9. Stockholm Univ. (Sweden). Dept. of Physical Geography
  10. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  11. Aix-Marseille Univ., and CNRS/IN2P3, Marseille (France)
  12. Golder Associates, Stockholm (Sweden)
  13. Sorbonne Univ., Paris (France)
  14. Maison de la Simulation, Gif-sur-Yvette (France)
  15. Dalhousie Univ., Halifax, NS (Canada)
  16. McGill Univ., Montreal, QC (Canada). Dept of Earth and Planetary Sciences
  17. Univ. Laval, QC (Canada). Dept. de geologie et de genie geologique
  18. Univ. de Toulouse (France)
  19. PSL Research Univ., Fontainebleau (France). MINES ParisTech, Centre de Geosciences
  20. Univ. Paris-Saclay, Gif-sur-Yvette (France). Lab. des Sciences du Climat et de l'Environnement; Univ. Paris-Saclay, Orsay (France). Geosciences Paris Sud, GEOPS/IPSL
  21. Federal Inst. for Geosciences and Natural Resources (BGR), Hannover (Germany)
  22. British Geological Survey. Nottingham (United Kingdom)
  23. Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden)
  24. U.S. Geological Survey, Menlo Park, CA (United States)
Publication Date:
Report Number(s):
SAND-2018-1705J
Journal ID: ISSN 0309-1708; 660707
Grant/Contract Number:
AC04-94AL85000; AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Advances in Water Resources
Additional Journal Information:
Journal Volume: 114; Journal Issue: C; Journal ID: ISSN 0309-1708
Publisher:
Elsevier
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Numerical simulation; Code benchmarking; Thermo-hydrological coupling; Permafrost; Sharp interface problems
OSTI Identifier:
1426796
Alternate Identifier(s):
OSTI ID: 1464021

Grenier, Christophe, Anbergen, Hauke, Bense, Victor, Chanzy, Quentin, Coon, Ethan T., Collier, Nathaniel O., Costard, François, Ferry, Michel, Frampton, Andrew, Frederick, Jennifer, Gonçalvès, Julio, Holmén, Johann, Jost, Anne, Kokh, Samuel, Kurylyk, Barret, McKenzie, Jeffrey, Molson, John, Mouche, Emmanuel, Orgogozo, Laurent, Pannetier, Romain, Rivière, Agnès, Roux, Nicolas, Rühaak, Wolfram, Scheidegger, Johanna, Selroos, Jan-Olof, Therrien, René, Vidstrand, Patrik, and Voss, Clifford. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. United States: N. p., Web. doi:10.1016/j.advwatres.2018.02.001.
Grenier, Christophe, Anbergen, Hauke, Bense, Victor, Chanzy, Quentin, Coon, Ethan T., Collier, Nathaniel O., Costard, François, Ferry, Michel, Frampton, Andrew, Frederick, Jennifer, Gonçalvès, Julio, Holmén, Johann, Jost, Anne, Kokh, Samuel, Kurylyk, Barret, McKenzie, Jeffrey, Molson, John, Mouche, Emmanuel, Orgogozo, Laurent, Pannetier, Romain, Rivière, Agnès, Roux, Nicolas, Rühaak, Wolfram, Scheidegger, Johanna, Selroos, Jan-Olof, Therrien, René, Vidstrand, Patrik, & Voss, Clifford. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. United States. doi:10.1016/j.advwatres.2018.02.001.
Grenier, Christophe, Anbergen, Hauke, Bense, Victor, Chanzy, Quentin, Coon, Ethan T., Collier, Nathaniel O., Costard, François, Ferry, Michel, Frampton, Andrew, Frederick, Jennifer, Gonçalvès, Julio, Holmén, Johann, Jost, Anne, Kokh, Samuel, Kurylyk, Barret, McKenzie, Jeffrey, Molson, John, Mouche, Emmanuel, Orgogozo, Laurent, Pannetier, Romain, Rivière, Agnès, Roux, Nicolas, Rühaak, Wolfram, Scheidegger, Johanna, Selroos, Jan-Olof, Therrien, René, Vidstrand, Patrik, and Voss, Clifford. 2018. "Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases". United States. doi:10.1016/j.advwatres.2018.02.001.
@article{osti_1426796,
title = {Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases},
author = {Grenier, Christophe and Anbergen, Hauke and Bense, Victor and Chanzy, Quentin and Coon, Ethan T. and Collier, Nathaniel O. and Costard, François and Ferry, Michel and Frampton, Andrew and Frederick, Jennifer and Gonçalvès, Julio and Holmén, Johann and Jost, Anne and Kokh, Samuel and Kurylyk, Barret and McKenzie, Jeffrey and Molson, John and Mouche, Emmanuel and Orgogozo, Laurent and Pannetier, Romain and Rivière, Agnès and Roux, Nicolas and Rühaak, Wolfram and Scheidegger, Johanna and Selroos, Jan-Olof and Therrien, René and Vidstrand, Patrik and Voss, Clifford},
abstractNote = {In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.},
doi = {10.1016/j.advwatres.2018.02.001},
journal = {Advances in Water Resources},
number = C,
volume = 114,
place = {United States},
year = {2018},
month = {2}
}