DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

Abstract

We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the 2540 deg2 patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of Planck 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and Planck 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6% to 0.3% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is 1.0174 ± 0.0033. Finally, we compare all three cross-spectra to the full-sky Planck 143 × 143 power spectrum andmore » find a hint (~1.5σ) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt—assuming it is real—is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8]; ORCiD logo [1];  [9]; ORCiD logo [10];  [11];  [12];  [2]; ORCiD logo [13];  [14];  [15]; ORCiD logo [16];  [15];  [17] more »;  [18];  [2];  [19];  [1];  [17]; ORCiD logo [20];  [21];  [22];  [2];  [1];  [23];  [24]; ORCiD logo [8];  [1];  [25]; ORCiD logo [26];  [27];  [28];  [29];  [30];  [31]; ORCiD logo [32];  [33];  [34]; ORCiD logo [35];  [1] « less
  1. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  2. Univ. of California, Davis, CA (United States). Dept. of Physics
  3. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  4. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  5. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division; Univ. of Chicago, IL (United States). Dept. of Physics; Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  6. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  8. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.
  9. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; California Inst. of Technology (CalTech), Pasadena, CA (United States)
  10. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Physics
  11. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.; Canadian Inst. for Advanced Research, Toronto, ON (Canada). CIFAR Program in Cosmology and Gravity
  12. Univ. of Colorado, Boulder, CO (United States). Center for Astrophysics and Space Astronomy, Dept. of Astrophysical and Planetary Sciences
  13. Univ. of California, Berkeley, CA (United States). Dept. of Physics; European Southern Observatory, Garching (Germany)
  14. Univ. of Colorado, Boulder, CO (United States). Center for Astrophysics and Space Astronomy, Dept. of Astrophysical and Planetary Sciences; Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
  15. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  16. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.; Canadian Inst. for Advanced Research, Toronto, ON (Canada). CIFAR Program in Cosmology and Gravity; Univ. of Illinois, Urbana, IL (United States). Astronomy Dept.; Univ. of Illinois, Urbana, IL (United States). Dept. of Physics
  17. Univ. of Chicago, IL (United States)
  18. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Physics; Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology
  19. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division
  20. Univ. of Arizona, Tucson, AZ (United States). Steward Observatory
  21. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics
  22. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Univ. of Chicago, IL (United States). Dept. of Physics; Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  23. Ludwig Maximilian Univ., Munich (Germany). Faculty of Physics
  24. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Physics; Univ. of Toronto, ON (Canada). Dunlap Inst. for Astronomy & Astrophysics
  25. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Physics
  26. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Univ. of Melbourne (Australia). School of Physics
  27. Case Western Reserve Univ., Cleveland, OH (United States). Center for Education and Research in Cosmology and Astrophysics, Dept. of Physics
  28. Univ. of Colorado, Boulder, CO (United States). Center for Astrophysics and Space Astronomy, Dept. of Astrophysical and Planetary Sciences; Case Western Reserve Univ., Cleveland, OH (United States). Center for Education and Research in Cosmology and Astrophysics, Dept. of Physics
  29. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Enrico Fermi Inst.; School of the Art Institute of Chicago, Chicago, IL (United States). Liberal Arts Dept.
  30. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Univ. of California, Berkeley, CA (United States). Dept. of Physics
  31. Case Western Reserve Univ., Cleveland, OH (United States). Center for Education and Research in Cosmology and Astrophysics, Dept. of Physics; California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.
  32. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  33. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Physics; Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; Stanford Univ., CA (United States). Dept. of Physics
  34. Univ. of Toronto, ON (Canada). Dunlap Inst. for Astronomy & Astrophysics; Univ. of Toronto, ON (Canada). Dept. of Astronomy & Astrophysics
  35. Univ. of Illinois, Urbana, IL (United States). Dept. of Astronomy; Univ. of Illinois, Urbana, IL (United States). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); Gordon and Betty Moore Foundation (GBMF); Engineering Research Council of Canada; Australian Research Council (ARC); USDOE Office of Science (SC), High Energy Physics (HEP); Gordon and Betty Moore Foundation; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1419974
Alternate Identifier(s):
OSTI ID: 1354868; OSTI ID: 1426763
Report Number(s):
FERMILAB-PUB-17-094-AE; arXiv:1704.00884
Journal ID: ISSN 1538-4357; TRN: US1801423
Grant/Contract Number:  
AC02-76SF00515; AC02-06CH11357; AC02-07CH11359; PLR-1248097; PHY-1125897; GBMF 947
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 853; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmic background radiation; methods: data analysis

Citation Formats

Hou, Z., Aylor, K., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Chown, R., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Everett, W. B., Follin, B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Marrone, D. P., McMahon, J. J., Meyer, S. S., Millea, M., Mocanu, L. M., Mohr, J. J., Natoli, T., Omori, Y., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Story, K. T., Vanderlinde, K., Vieira, J. D., and Williamson, R. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data. United States: N. p., 2018. Web. doi:10.3847/1538-4357/aaa3ef.
Hou, Z., Aylor, K., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Chown, R., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Everett, W. B., Follin, B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Marrone, D. P., McMahon, J. J., Meyer, S. S., Millea, M., Mocanu, L. M., Mohr, J. J., Natoli, T., Omori, Y., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Story, K. T., Vanderlinde, K., Vieira, J. D., & Williamson, R. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data. United States. https://doi.org/10.3847/1538-4357/aaa3ef
Hou, Z., Aylor, K., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Chown, R., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Everett, W. B., Follin, B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Marrone, D. P., McMahon, J. J., Meyer, S. S., Millea, M., Mocanu, L. M., Mohr, J. J., Natoli, T., Omori, Y., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Story, K. T., Vanderlinde, K., Vieira, J. D., and Williamson, R. Wed . "A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data". United States. https://doi.org/10.3847/1538-4357/aaa3ef. https://www.osti.gov/servlets/purl/1419974.
@article{osti_1419974,
title = {A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data},
author = {Hou, Z. and Aylor, K. and Benson, B. A. and Bleem, L. E. and Carlstrom, J. E. and Chang, C. L. and Cho, H-M. and Chown, R. and Crawford, T. M. and Crites, A. T. and de Haan, T. and Dobbs, M. A. and Everett, W. B. and Follin, B. and George, E. M. and Halverson, N. W. and Harrington, N. L. and Holder, G. P. and Holzapfel, W. L. and Hrubes, J. D. and Keisler, R. and Knox, L. and Lee, A. T. and Leitch, E. M. and Luong-Van, D. and Marrone, D. P. and McMahon, J. J. and Meyer, S. S. and Millea, M. and Mocanu, L. M. and Mohr, J. J. and Natoli, T. and Omori, Y. and Padin, S. and Pryke, C. and Reichardt, C. L. and Ruhl, J. E. and Sayre, J. T. and Schaffer, K. K. and Shirokoff, E. and Staniszewski, Z. and Stark, A. A. and Story, K. T. and Vanderlinde, K. and Vieira, J. D. and Williamson, R.},
abstractNote = {We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the 2540 deg2 patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of Planck 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and Planck 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6% to 0.3% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is 1.0174 ± 0.0033. Finally, we compare all three cross-spectra to the full-sky Planck 143 × 143 power spectrum and find a hint (~1.5σ) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt—assuming it is real—is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.},
doi = {10.3847/1538-4357/aaa3ef},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 853,
place = {United States},
year = {Wed Jan 17 00:00:00 EST 2018},
month = {Wed Jan 17 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Figures / Tables:

FiG 1 FiG 1: The celestial southern hemisphere of CMB data from Planck HFI 143 GHz data. The black curve outlines the SPT-SZ survey coverage. The image is oriented such that the line of 0h right ascension extends from the center to the top of the hemisphere, and right ascension increases counter-clockwise.

Save / Share:

Works referenced in this record:

Planck 2013 results. VII. HFI time response and beams
journal, October 2014


Planck 2015 results : VIII. High Frequency Instrument data processing: Calibration and maps
journal, September 2016


Planck 2015 results : VII. High Frequency Instrument data processing: Time-ordered information and beams
journal, September 2016


Planck 2015 results : XII. Full focal plane simulations
journal, September 2016


MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets
journal, March 2002

  • Hivon, Eric; Gorski, Krzysztof M.; Netterfield, C. Barth
  • The Astrophysical Journal, Vol. 567, Issue 1
  • DOI: 10.1086/338126

HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

Fast Cosmic Microwave Background Analyses via Correlation Functions
journal, February 2001

  • Szapudi, István; Prunet, Simon; Pogosyan, Dmitry
  • The Astrophysical Journal, Vol. 548, Issue 2
  • DOI: 10.1086/319105

Planck 2013 results. XVI. Cosmological parameters
journal, October 2014


NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: FINAL MAPS AND RESULTS
journal, September 2013

  • Bennett, C. L.; Larson, D.; Weiland, J. L.
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 2
  • DOI: 10.1088/0067-0049/208/2/20

Predictions for high-frequency radio surveys of extragalactic sources
journal, February 2005


The Atacama Cosmology Telescope: cross correlation with Planck maps
journal, July 2014

  • Louis, Thibaut; Addison, Graeme E.; Hasselfield, Matthew
  • Journal of Cosmology and Astroparticle Physics, Vol. 2014, Issue 07
  • DOI: 10.1088/1475-7516/2014/07/016

Planck 2015 results : XI. CMB power spectra, likelihoods, and robustness of parameters
journal, September 2016


Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation
journal, September 2016


Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Planck 2015 results : XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
journal, September 2016


Planck 2013 results. I. Overview of products and scientific results
journal, October 2014


NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS
journal, September 2013

  • Hinshaw, G.; Larson, D.; Komatsu, E.
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 2
  • DOI: 10.1088/0067-0049/208/2/19

Herschel observations and a model for IRAS 08572+3915: a candidate for the most luminous infrared galaxy in the local (z < 0.2) Universe
journal, October 2013

  • Efstathiou, A.; Pearson, C.; Farrah, D.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 437, Issue 1
  • DOI: 10.1093/mnrasl/slt131

Fast estimation of polarization power spectra using correlation functions
journal, May 2004


QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM
journal, February 2016


Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations
journal, February 2014


A Hybrid Model for the Evolution of Galaxies and Active Galactic Nuclei in the Infrared
journal, April 2013


Cosmological parameters from pre-planck cosmic microwave background measurements
journal, May 2013


A Measurement of Secondary Cosmic Microwave Background Anisotropies from the 2500 Square-Degree Spt-Sz Survey
journal, January 2015


CONSTRAINTS ON COSMOLOGY FROM THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM OF THE 2500 deg 2 SPT-SZ SURVEY
journal, January 2014


A Measurement of the Damping tail of the Cosmic Microwave Background Power Spectrum with the South pole Telescope
journal, November 2011


Cosmic microwave background anisotropy window functions revisited
journal, October 1999


Lensed CMB simulation and parameter estimation
journal, April 2005


EXTRAGALACTIC MILLIMETER-WAVE POINT-SOURCE CATALOG, NUMBER COUNTS AND STATISTICS FROM 771 deg 2 OF THE SPT-SZ SURVEY
journal, November 2013


A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3
journal, March 2011


A 2.4% Determination of the Local Value of the Hubble Constant
journal, July 2016

  • Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.
  • The Astrophysical Journal, Vol. 826, Issue 1
  • DOI: 10.3847/0004-637X/826/1/56

THE FIRST PUBLIC RELEASE OF SOUTH POLE TELESCOPE DATA: MAPS OF A 95 deg 2 FIELD FROM 2008 OBSERVATIONS
journal, November 2011


Impact of Cluster Physics on the Sunyaev-Zel'Dovich Power Spectrum
journal, November 2010


Deconstructing the Kinetic sz Power Spectrum
journal, August 2012


A Measurement of the Cosmic Microwave Background Damping tail from the 2500-Square-Degree Spt-Sz Survey
journal, November 2013


Neutrinos Help Reconcile Planck Measurements with the Local Universe
journal, February 2014


Planck 2015 results : VI. LFI mapmaking
journal, September 2016


Planck 2015 results : X. Diffuse component separation: Foreground maps
journal, September 2016


Planck 2015 results : XVI. Isotropy and statistics of the CMB
journal, September 2016


Planck 2015 results : XXVI. The Second
journal, September 2016


Impact of Cluster Physics on the Sunyaev-Zel'dovich Power Spectrum
text, January 2010


Deconstructing the kinetic SZ Power Spectrum
text, January 2011


A hybrid model for the evolution of galaxies and Active Galactic Nuclei in the infrared
text, January 2013


Planck 2013 results. I. Overview of products and scientific results
text, January 2013


Planck 2013 results. VII. HFI time response and beams
text, January 2013


Planck 2013 results. XVI. Cosmological parameters
text, January 2013


Planck 2015 results. XIII. Cosmological parameters
text, January 2015


Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
text, January 2015


Quantifying discordance in the 2015 Planck CMB spectrum
text, January 2015


A 2.4% Determination of the Local Value of the Hubble Constant
text, January 2016


Fast estimation of polarization power spectra using correlation functions
text, January 2003


Predictions for high-frequency radio surveys of extragalactic sources
text, January 2004


Works referencing / citing this record:

Maps of the Southern Millimeter-wave Sky from Combined 2500 deg 2 SPT-SZ and Planck Temperature Data
journal, November 2018

  • Chown, R.; Omori, Y.; Aylor, K.
  • The Astrophysical Journal Supplement Series, Vol. 239, Issue 1
  • DOI: 10.3847/1538-4365/aae694

Measurements of the Cross-spectra of the Cosmic Infrared and Microwave Backgrounds from 95 to 1200 GHz
journal, August 2019

  • Viero, M. P.; Reichardt, C. L.; Benson, B. A.
  • The Astrophysical Journal, Vol. 881, Issue 2
  • DOI: 10.3847/1538-4357/ab2da0

Sounds Discordant: Classical Distance Ladder and ΛCDM-based Determinations of the Cosmological Sound Horizon
journal, March 2019


Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra
journal, December 2018


Analytic Calculation of Covariance between Cosmological Parameters from Correlated Data Sets, with an Application to SPTpol
journal, December 2019

  • Kable, Joshua A.; Addison, Graeme E.; Bennett, Charles L.
  • The Astrophysical Journal, Vol. 888, Issue 1
  • DOI: 10.3847/1538-4357/ab54cc