skip to main content

DOE PAGESDOE PAGES

Title: Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoretical calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15more » fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
Authors:
 [1] ;  [1] ;  [2] ;  [2] ;  [3] ;  [1] ; ORCiD logo [4]
  1. Univ. of Pittsburgh, PA (United States). Chemical and Petroleum Engineering, Swanson School of Engineering
  2. Univ. of Pittsburgh, PA (United States). Swanson School of Engineering, Dept. of Bioengineering; Univ. of Pittsburgh, PA (United States). Center for Complex Engineered Multifunctional Materials
  3. Univ. of Pittsburgh, PA (United States). Swanson School of Engineering, Dept. of Bioengineering
  4. Univ. of Pittsburgh, PA (United States). Chemical and Petroleum Engineering, Swanson School of Engineering; Univ. of Pittsburgh, PA (United States). Swanson School of Engineering, Dept. of Bioengineering; Univ. of Pittsburgh, PA (United States). Center for Complex Engineered Multifunctional Materials; Univ. of Pittsburgh, PA (United States). Mechanical Engineering and Materials Science; Univ. of Pittsburgh, PA (United States). School of Dental Medicine
Publication Date:
Grant/Contract Number:
SC0001531
Type:
Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 7; Journal Issue: 28; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Research Org:
Univ. of Pittsburgh, PA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN
OSTI Identifier:
1426497