skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

Abstract

Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy, and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm)4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [2];  [4];  [5];  [4]; ORCiD logo [4]; ORCiD logo [2];  [5];  [6]; ORCiD logo [2]; ORCiD logo [7]
  1. Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Science Directorate
  3. Brookhaven National Laboratory (BNL), Upton, NY (United States)National Synchrotron Light Source II (NSLS-II)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). W. R. Wiley Environmental Molecular Sciences Lab.
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Science Directorate; Univ. of Washington, Seattle, WA (United States). Dept. of Materials Science and Engineering
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy & Environment Directorate
  7. Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)National Synchrotron Light Source II (NSLS-II)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); National Science Foundation (NSF)
OSTI Identifier:
1426463
Report Number(s):
BNL-203353-2018-JAAM
Journal ID: ISSN 2040-3364; NANOHL; TRN: US1802290
Grant/Contract Number:  
SC0012704; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 10; Journal Issue: 9; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Terban, Maxwell W., Banerjee, Debasis, Ghose, Sanjit, Medasani, Bharat, Shukla, Anil, Legg, Benjamin A., Zhou, Yufan, Zhu, Zihua, Sushko, Maria L., De Yoreo, James J., Liu, Jun, Thallapally, Praveen K., and Billinge, Simon J. L. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. United States: N. p., 2018. Web. doi:10.1039/C7NR07949D.
Terban, Maxwell W., Banerjee, Debasis, Ghose, Sanjit, Medasani, Bharat, Shukla, Anil, Legg, Benjamin A., Zhou, Yufan, Zhu, Zihua, Sushko, Maria L., De Yoreo, James J., Liu, Jun, Thallapally, Praveen K., & Billinge, Simon J. L. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. United States. doi:10.1039/C7NR07949D.
Terban, Maxwell W., Banerjee, Debasis, Ghose, Sanjit, Medasani, Bharat, Shukla, Anil, Legg, Benjamin A., Zhou, Yufan, Zhu, Zihua, Sushko, Maria L., De Yoreo, James J., Liu, Jun, Thallapally, Praveen K., and Billinge, Simon J. L. Mon . "Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution". United States. doi:10.1039/C7NR07949D. https://www.osti.gov/servlets/purl/1426463.
@article{osti_1426463,
title = {Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution},
author = {Terban, Maxwell W. and Banerjee, Debasis and Ghose, Sanjit and Medasani, Bharat and Shukla, Anil and Legg, Benjamin A. and Zhou, Yufan and Zhu, Zihua and Sushko, Maria L. and De Yoreo, James J. and Liu, Jun and Thallapally, Praveen K. and Billinge, Simon J. L.},
abstractNote = {Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy, and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm)4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.},
doi = {10.1039/C7NR07949D},
journal = {Nanoscale},
number = 9,
volume = 10,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrospray ion source. Another variation on the free-jet theme
journal, September 1984

  • Yamashita, Masamichi; Fenn, John B.
  • The Journal of Physical Chemistry, Vol. 88, Issue 20
  • DOI: 10.1021/j150664a002

Detection and characterization of nanoparticles in suspension at low concentrations using the X-ray total scattering pair distribution function technique
journal, January 2015

  • Terban, Maxwell W.; Johnson, Matthew; Di Michiel, Marco
  • Nanoscale, Vol. 7, Issue 12
  • DOI: 10.1039/C4NR06486K

Fast Nucleation and Growth of ZIF-8 Nanocrystals Monitored by Time-Resolved In Situ Small-Angle and Wide-Angle X-Ray Scattering
journal, July 2011

  • Cravillon, Janosch; Schröder, Christian A.; Nayuk, Roman
  • Angewandte Chemie International Edition, Vol. 50, Issue 35
  • DOI: 10.1002/anie.201102071

Recrystallization, Phase Composition, and Local Structure of Amorphous Lactose from the Total Scattering Pair Distribution Function
journal, November 2015

  • Terban, Maxwell W.; Cheung, Eugene Y.; Krolikowski, Paul
  • Crystal Growth & Design, Vol. 16, Issue 1
  • DOI: 10.1021/acs.cgd.5b01100

Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants
journal, January 2011

  • Pan, Yichang; Heryadi, Dodi; Zhou, Feng
  • CrystEngComm, Vol. 13, Issue 23
  • DOI: 10.1039/c1ce05780d

Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques
journal, November 2011

  • Yang, Li; Yu, Xiao-Ying; Zhu, Zihua
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 29, Issue 6
  • DOI: 10.1116/1.3654147

Observing the Growth of Metal–Organic Frameworks by in Situ Liquid Cell Transmission Electron Microscopy
journal, June 2015

  • Patterson, Joseph P.; Abellan, Patricia; Denny, Michael S.
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b00817

In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach
journal, December 2016


PDFgetX3 : a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions
journal, March 2013


Beyond the H 2 /CO 2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes
journal, January 2015

  • Sánchez-Laínez, Javier; Zornoza, Beatriz; Mayoral, Álvaro
  • Journal of Materials Chemistry A, Vol. 3, Issue 12
  • DOI: 10.1039/C4TA06820C

Universal solvent restructuring induced by colloidal nanoparticles
journal, January 2015


Luminescent Functional Metal–Organic Frameworks
journal, June 2011

  • Cui, Yuanjing; Yue, Yanfeng; Qian, Guodong
  • Chemical Reviews, Vol. 112, Issue 2
  • DOI: 10.1021/cr200101d

Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

The chemistry of nucleation
journal, January 2016


Thermal Amorphization of Zeolitic Imidazolate Frameworks
journal, February 2011

  • Bennett, Thomas D.; Keen, David A.; Tan, Jin-Chong
  • Angewandte Chemie International Edition, Vol. 50, Issue 13
  • DOI: 10.1002/anie.201007303

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

In Situ Molecular Imaging of the Biofilm and Its Matrix
journal, October 2016


Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework
journal, April 2009

  • Cravillon, Janosch; Münzer, Simon; Lohmeier, Sven-Jare
  • Chemistry of Materials, Vol. 21, Issue 8
  • DOI: 10.1021/cm900166h

Towards atomistic understanding of polymorphism in the solvothermal synthesis of ZrO 2 nanoparticles
journal, October 2016

  • Dippel, Ann-Christin; Jensen, Kirsten M. Ø.; Tyrsted, Christoffer
  • Acta Crystallographica Section A Foundations and Advances, Vol. 72, Issue 6
  • DOI: 10.1107/S2053273316012675

Structures of Hard Phases in Thermoplastic Polyurethanes
journal, September 2016


Structure and Properties of an Amorphous Metal-Organic Framework
journal, March 2010


Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (Dimethyl Sulfoxide) as solvent and kinetic transformation studies
journal, December 2016


Revealing the Mechanisms behind SnO 2 Nanoparticle Formation and Growth during Hydrothermal Synthesis: An In Situ Total Scattering Study
journal, April 2012

  • Jensen, Kirsten M. Ø.; Christensen, Mogens; Juhas, Pavol
  • Journal of the American Chemical Society, Vol. 134, Issue 15
  • DOI: 10.1021/ja300978f

High yield 1-L scale synthesis of ZIF-8 via a sonochemical route
journal, March 2013


In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework
journal, March 2015

  • Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7662

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


An EXAFS study of the formation of a nanoporous metal–organic framework: evidence for the retention of secondary building units during synthesis
journal, January 2006

  • Surblé, Suzy; Millange, Franck; Serre, Christian
  • Chemical Communications, Issue 14
  • DOI: 10.1039/b600709k

Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks
journal, September 2011

  • Bennett, Thomas D.; Cao, Shuai; Tan, Jin Chong
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja206082s

Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
journal, January 2011

  • Pan, Yichang; Liu, Yunyang; Zeng, Gaofeng
  • Chemical Communications, Vol. 47, Issue 7
  • DOI: 10.1039/c0cc05002d

Rapid-acquisition pair distribution function (RA-PDF) analysis
journal, November 2003

  • Chupas, Peter J.; Qiu, Xiangyun; Hanson, Jonathan C.
  • Journal of Applied Crystallography, Vol. 36, Issue 6, p. 1342-1347
  • DOI: 10.1107/S0021889803017564

Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy
journal, January 2012

  • Cravillon, Janosch; Schröder, Christian A.; Bux, Helge
  • CrystEngComm, Vol. 14, Issue 2
  • DOI: 10.1039/C1CE06002C

Structural Evolution of Zeolitic Imidazolate Framework-8
journal, December 2010

  • Venna, Surendar R.; Jasinski, Jacek B.; Carreon, Moises A.
  • Journal of the American Chemical Society, Vol. 132, Issue 51
  • DOI: 10.1021/ja109268m

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage
journal, January 2002

  • Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel
  • Science, Vol. 295, Issue 5554, p. 469-472
  • DOI: 10.1126/science.1067208

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Synthesis and properties of nano zeolitic imidazolate frameworks
journal, January 2010

  • Nune, Satish K.; Thallapally, Praveen K.; Dohnalkova, Alice
  • Chemical Communications, Vol. 46, Issue 27
  • DOI: 10.1039/c002088e

Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer
journal, July 2013


Capturing the transient species at the electrode–electrolyte interface by in situ dynamic molecular imaging
journal, January 2016

  • Yu, Jiachao; Zhou, Yufan; Hua, Xin
  • Chemical Communications, Vol. 52, Issue 73
  • DOI: 10.1039/C6CC02893D

Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies
journal, February 2006

  • Huang, Xiao-Chun; Lin, Yan-Yong; Zhang, Jie-Peng
  • Angewandte Chemie, Vol. 118, Issue 10, p. 1587-1589
  • DOI: 10.1002/ange.200503778

Assembly of a Homochiral, Body-Centered Cubic Network Composed of Vertex-Shared Mg 12 Cages:  Use of Electrospray Ionization Mass Spectrometry to Monitor Metal Carboxylate Nucleation
journal, November 2007

  • Rood, Jeffrey A.; Boggess, William C.; Noll, Bruce C.
  • Journal of the American Chemical Society, Vol. 129, Issue 44
  • DOI: 10.1021/ja074558j

Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis
journal, September 2016

  • Zhou, Yufan; Yao, Juan; Ding, Yuanzhao
  • Journal of The American Society for Mass Spectrometry, Vol. 27, Issue 12
  • DOI: 10.1007/s13361-016-1478-x

Evolution of atomic structure during nanoparticle formation
journal, April 2014


Understanding the Formation and Evolution of Ceria Nanoparticles Under Hydrothermal Conditions
journal, August 2012

  • Tyrsted, Christoffer; Ørnsbjerg Jensen, Kirsten Marie; Bøjesen, Espen Drath
  • Angewandte Chemie International Edition, Vol. 51, Issue 36
  • DOI: 10.1002/anie.201204747

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Mechanisms for Iron Oxide Formation under Hydrothermal Conditions: An in Situ Total Scattering Study
journal, October 2014

  • Jensen, Kirsten M. Ø.; Andersen, Henrik L.; Tyrsted, Christoffer
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn5044096

Revealing the Initial Reaction Behavior in the Continuous Synthesis of Metal–Organic Frameworks Using Real-Time Synchrotron X-ray Analysis
journal, April 2017


Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites
journal, September 2011

  • Stock, Norbert; Biswas, Shyam
  • Chemical Reviews, Vol. 112, Issue 2
  • DOI: 10.1021/cr200304e

In Situ Total X-Ray Scattering Study of WO 3 Nanoparticle Formation under Hydrothermal Conditions
journal, February 2014

  • Saha, Dipankar; Jensen, Kirsten M. Ø.; Tyrsted, Christoffer
  • Angewandte Chemie International Edition, Vol. 53, Issue 14
  • DOI: 10.1002/anie.201311254

Amorphous Metal–Organic Frameworks
journal, April 2014

  • Bennett, Thomas D.; Cheetham, Anthony K.
  • Accounts of Chemical Research, Vol. 47, Issue 5
  • DOI: 10.1021/ar5000314

Real-time and in situ monitoring of mechanochemical milling reactions
journal, December 2012

  • Friščić, Tomislav; Halasz, Ivan; Beldon, Patrick J.
  • Nature Chemistry, Vol. 5, Issue 1
  • DOI: 10.1038/nchem.1505

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

    Works referencing / citing this record:

    The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO‐66 MOF Formation
    journal, January 2019

    • Xu, Hui; Sommer, Sanna; Broge, Nils Lau Nyborg
    • Chemistry – A European Journal, Vol. 25, Issue 8
    • DOI: 10.1002/chem.201805024

    The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO‐66 MOF Formation
    text, January 2019

    • Xu, Hui; Sommer, Sanna; Broge, Nils Lau Nyborg
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2019-01803