DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

Abstract

Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo3S13]2- nanocluster catalyst contains a structural motif that resembles the active site of MoS2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo3S13]2- catalysts through catalyst-support interactions. We synthesize [Mo3S13]2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability to tune the hydrogen binding energy of [Mo3S13]2- using catalyst-support electronic interactions and optimize HER activity.

Authors:
 [1];  [2];  [1];  [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [4]
  1. Stanford Univ., CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States); Technical Univ. of Denmark, Lyngby (Denmark)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1426436
Grant/Contract Number:  
AC02-76SF00515; EE006670; 9455; 1433442
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 7; Journal Issue: 10; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hellstern, Thomas R., Kibsgaard, Jakob, Tsai, Charlie, Palm, David W., King, Laurie A., Abild-Pedersen, Frank, and Jaramillo, Thomas F. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters. United States: N. p., 2017. Web. doi:10.1021/acscatal.7b02133.
Hellstern, Thomas R., Kibsgaard, Jakob, Tsai, Charlie, Palm, David W., King, Laurie A., Abild-Pedersen, Frank, & Jaramillo, Thomas F. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters. United States. https://doi.org/10.1021/acscatal.7b02133
Hellstern, Thomas R., Kibsgaard, Jakob, Tsai, Charlie, Palm, David W., King, Laurie A., Abild-Pedersen, Frank, and Jaramillo, Thomas F. Fri . "Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters". United States. https://doi.org/10.1021/acscatal.7b02133. https://www.osti.gov/servlets/purl/1426436.
@article{osti_1426436,
title = {Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters},
author = {Hellstern, Thomas R. and Kibsgaard, Jakob and Tsai, Charlie and Palm, David W. and King, Laurie A. and Abild-Pedersen, Frank and Jaramillo, Thomas F.},
abstractNote = {Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo3S13]2- nanocluster catalyst contains a structural motif that resembles the active site of MoS2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo3S13]2- catalysts through catalyst-support interactions. We synthesize [Mo3S13]2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability to tune the hydrogen binding energy of [Mo3S13]2- using catalyst-support electronic interactions and optimize HER activity.},
doi = {10.1021/acscatal.7b02133},
journal = {ACS Catalysis},
number = 10,
volume = 7,
place = {United States},
year = {Fri Sep 22 00:00:00 EDT 2017},
month = {Fri Sep 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen production via solid electrolytic routes: Hydrogen production
journal, September 2012

  • Badwal, Sukhvinder P. S.; Giddey, Sarbjit; Munnings, Christopher
  • Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 2, Issue 5
  • DOI: 10.1002/wene.50

Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects
journal, October 2002


Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation
journal, March 2015

  • Vesborg, Peter C. K.; Seger, Brian; Chorkendorff, Ib
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 6
  • DOI: 10.1021/acs.jpclett.5b00306

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
journal, January 2011

  • McKone, James R.; Warren, Emily L.; Bierman, Matthew J.
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01488a

Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution
journal, January 2013

  • McKone, James R.; Sadtler, Bryce F.; Werlang, Caroline A.
  • ACS Catalysis, Vol. 3, Issue 2
  • DOI: 10.1021/cs300691m

Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions
journal, November 2012

  • Vrubel, Heron; Hu, Xile
  • Angewandte Chemie International Edition, Vol. 51, Issue 51
  • DOI: 10.1002/anie.201207111

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles
journal, January 2014

  • McEnaney, Joshua M.; Chance Crompton, J.; Callejas, Juan F.
  • Chemical Communications, Vol. 50, Issue 75
  • DOI: 10.1039/C4CC04709E

Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
journal, June 2013

  • Popczun, Eric J.; McKone, James R.; Read, Carlos G.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja403440e

Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles
journal, April 2014

  • Popczun, Eric J.; Read, Carlos G.; Roske, Christopher W.
  • Angewandte Chemie, Vol. 126, Issue 21, p. 5531-5534
  • DOI: 10.1002/ange.201402646

Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes
journal, December 2015

  • Hellstern, Thomas R.; Benck, Jesse D.; Kibsgaard, Jakob
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501758

An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
journal, January 2015

  • Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6982

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets
journal, May 2012

  • Chen, Wei-Fu; Sasaki, Kotaro; Ma, Chao
  • Angewandte Chemie International Edition, Vol. 51, Issue 25
  • DOI: 10.1002/anie.201200699

Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
journal, January 2016

  • Shi, Yanmei; Zhang, Bin
  • Chemical Society Reviews, Vol. 45, Issue 6, p. 1529-1541
  • DOI: 10.1039/C5CS00434A

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
journal, August 2012

  • Benck, Jesse D.; Chen, Zhebo; Kuritzky, Leah Y.
  • ACS Catalysis, Vol. 2, Issue 9, p. 1916-1923
  • DOI: 10.1021/cs300451q

Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
journal, January 2012

  • Merki, Daniel; Vrubel, Heron; Rovelli, Lorenzo
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20539d

Electrochemical Tuning of MoS 2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution
journal, April 2014

  • Wang, Haotian; Lu, Zhiyi; Kong, Desheng
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn500959v

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts
journal, November 2008

  • Jaramillo, Thomas F.; Bonde, Jacob; Zhang, Jingdong
  • The Journal of Physical Chemistry C, Vol. 112, Issue 45, p. 17492-17498
  • DOI: 10.1021/jp802695e

A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, October 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 42
  • DOI: 10.1021/jp1048887

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends
journal, January 2015

  • Kibsgaard, Jakob; Tsai, Charlie; Chan, Karen
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02179K

Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies
journal, November 2015

  • Li, Hong; Tsai, Charlie; Koh, Ai Leen
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4465

Co-Doped MoS 2 Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution
journal, December 2015

  • Dai, Xiaoping; Du, Kangli; Li, Zhanzhao
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 49
  • DOI: 10.1021/acsami.5b08420

Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution
journal, January 2015


Rational design of MoS 2 catalysts: tuning the structure and activity via transition metal doping
journal, January 2015

  • Tsai, Charlie; Chan, Karen; Nørskov, Jens K.
  • Catalysis Science & Technology, Vol. 5, Issue 1
  • DOI: 10.1039/C4CY01162G

Tuning the MoS 2 Edge-Site Activity for Hydrogen Evolution via Support Interactions
journal, February 2014

  • Tsai, Charlie; Abild-Pedersen, Frank; Nørskov, Jens K.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404444k

Directed Synthesis of[Mo3S13]2−, an Isolated Cluster Containing Sulfur Atoms in Three Different States of Bonding
journal, July 1978

  • Müller, Achim; Sarkar, Sabyasachi; Bhattacharyya, Ram Gopal
  • Angewandte Chemie International Edition in English, Vol. 17, Issue 7
  • DOI: 10.1002/anie.197805351

Identifying chemisorption in the interaction of thiol collectors with sulfide minerals by XPS: adsorption of xanthate on silver and silver sulfide
journal, November 1995

  • Buckley, Alan N.; Woods, Ronald
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 104, Issue 2-3
  • DOI: 10.1016/0927-7757(95)03279-1

XAS and XPS examination of the Au–S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions
journal, February 2010

  • Mikhlin, Yu.; Likhatski, M.; Tomashevich, Ye.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 177, Issue 1
  • DOI: 10.1016/j.elspec.2009.12.007

ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory
journal, December 1987


Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H
journal, August 2002


Electrocatalysis of H2 evolution on RuO2 + IrO2 mixed oxide electrodes
journal, August 1994


Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction
journal, January 2013

  • Vrubel, Heron; Moehl, Thomas; Grätzel, Michael
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc45416a

Hydrogen Evolution Over Bimetallic Systems: Understanding the Trends
journal, May 2006

  • Greeley, Jeff; Nørskov, Jens K.; Kibler, Ludwig A.
  • ChemPhysChem, Vol. 7, Issue 5, p. 1032-1035
  • DOI: 10.1002/cphc.200500663

Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts
journal, March 2014

  • Michalsky, Ronald; Zhang, Yin-Jia; Peterson, Andrew A.
  • ACS Catalysis, Vol. 4, Issue 5
  • DOI: 10.1021/cs500056u

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Works referencing / citing this record:

State-of-the-Art Advances and Perspectives for Electrocatalysis
book, January 2020

  • Ramohlola, Kabelo E.; Hato, Mpitloane J.; Monama, Gobeng R.
  • Methods for Electrocatalysis: Advanced Materials and Allied Applications, p. 311-352
  • DOI: 10.1007/978-3-030-27161-9_13

Tungsten-inert gas welding electrodes as low-cost, green and pH-universal electrocatalysts for the hydrogen evolution reaction
journal, January 2019

  • Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein
  • New Journal of Chemistry, Vol. 43, Issue 29
  • DOI: 10.1039/c9nj02298h

Support and Interface Effects in Water‐Splitting Electrocatalysts
journal, December 2018


Gold nanoparticles as an outstanding catalyst for the hydrogen evolution reaction
journal, January 2018

  • Tran, Tien D.; Nguyen, Mai T. T.; Le, Hoang V.
  • Chemical Communications, Vol. 54, Issue 27
  • DOI: 10.1039/c8cc00038g

Nanostructured Nickel Nitride with Reduced Graphene Oxide Composite Bifunctional Electrocatalysts for an Efficient Water-Urea Splitting
journal, November 2019

  • Wang, Feng; Zhao, Dongsheng; Zhang, Linbao
  • Nanomaterials, Vol. 9, Issue 11
  • DOI: 10.3390/nano9111583

Benchmarking the Activity, Stability, and Inherent Electrochemistry of Amorphous Molybdenum Sulfide for Hydrogen Production
journal, January 2019

  • Escalera-López, Daniel; Lou, Zhiheng; Rees, Neil V.
  • Advanced Energy Materials, Vol. 9, Issue 8
  • DOI: 10.1002/aenm.201802614

Hydrogen evolution reaction (HER) on Au@Ag ultrananoclusters as electro-catalysts
journal, January 2018

  • Chang, Le; Cheng, Daojian; Sementa, Luca
  • Nanoscale, Vol. 10, Issue 37
  • DOI: 10.1039/c8nr06105j

The mechanistic role of a support–catalyst interface in electrocatalytic water reduction by Co 3 O 4 supported nanocarbon florets
journal, January 2019

  • Saha, Jayeeta; Ball, Ranadeb; Sah, Ananya
  • Nanoscale, Vol. 11, Issue 28
  • DOI: 10.1039/c9nr03907d

Boosting the electrocatalytic activity of amorphous molybdenum sulfide nanoflakes via nickel sulfide decoration
journal, January 2019

  • Zheng, Zheng; Su, Tong; Shi, Jianping
  • Nanoscale, Vol. 11, Issue 47
  • DOI: 10.1039/c9nr05916d

The impact of microstructural features of carbon supports on the electrocatalytic hydrogen evolution reaction
journal, January 2019

  • Suliman, Munzir H.; Adam, Alaaldin; Siddiqui, Mohammad N.
  • Catalysis Science & Technology, Vol. 9, Issue 6
  • DOI: 10.1039/c8cy02549e

Polyoxothiometalate-Derivatized Silicon Photocathodes for Sunlight-Driven Hydrogen Evolution Reaction
journal, October 2018


Nanostructured Nickel Nitride with Reduced Graphene Oxide Composite Bifunctional Electrocatalysts for an Efficient Water-Urea Splitting
journal, November 2019

  • Wang, Feng; Zhao, Dongsheng; Zhang, Linbao
  • Nanomaterials, Vol. 9, Issue 11
  • DOI: 10.3390/nano9111583