High Areal Energy 3D-Interdigitated Micro-Supercapacitors in Aqueous and Ionic Liquid Electrolytes
- Univ. de Lille, Lille (France). Inst. d'Electronique, de Microelectronique et de Nanotechnologies; Univ. de Nantes, Nantes (France). Inst. des Materiaux Jean Rouxel (IMN); Reseau sur le Stockage Electrochimique de l'Energie (RS2E), Amiens (France)
- Univ. de Nantes, Nantes (France). Inst. des Materiaux Jean Rouxel (IMN); Reseau sur le Stockage Electrochimique de l'Energie (RS2E), Amiens (France)
- Reseau sur le Stockage Electrochimique de l'Energie (RS2E), Amiens (France); Univ. de Picardie Jules Verne, Amiens (France)
- Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
- Univ. de Lille, Lille (France). Inst. d'Electronique, de Microelectronique et de Nanotechnologies; Reseau sur le Stockage Electrochimique de l'Energie (RS2E), Amiens (France)
Abstract The fabrication of high‐performance on‐chip 3D micro‐supercapacitors (MSCs) based on MnO 2 pseudocapacitive binder‐free thin film electrodes (<500 nm thick) with interdigitated topology is reported. An original technological process easily scalable to pilot production line is proposed on 3 in. silicon wafers. High areal energy (>10 µW h cm −2 ) and power densities (>10 mW cm −2 ) are reached on small footprint micro‐supercapacitors (4 mm 2 ) tested in aqueous electrolyte (0.8 V). Furthermore, the cell voltage of such MSCs can be increased up to 1.5 V with 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids but at the expense of the areal capacitance. The performance in ionic liquid is in the same order of magnitude than the one obtained for aqueous electrolyte. The benefit from the 3D topology is clearly demonstrated when the surface performance is normalized to the electrode thickness allowing this study to obtain an interesting energy versus power tradeoff (>10 µW h cm −2 µm −1 and >1 mw cm −2 µm −1 ). This study aims at improving the energy density of MSCs while keeping high power capability, by combining the use of ionic liquids and the deposition of MnO 2 thin film onto robust and efficient 3D scaffolds.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1426213
- Alternate ID(s):
- OSTI ID: 1375651
- Journal Information:
- Advanced Materials Technologies, Vol. 2, Issue 10; ISSN 2365-709X
- Publisher:
- WileyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels
High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes