DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phonon Conduction in Silicon Nanobeam Labyrinths

Abstract

Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m-1K-1 for straight beam to ~31 W m-1 K-1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.

Authors:
 [1];  [2];  [3];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [4]; ORCiD logo [5];  [1];  [2];  [1]
  1. Stanford Univ., CA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Stanford Univ., CA (United States); Univ. of Texas, San Antonio, TX (United States)
  4. Stanford Univ., CA (United States); Kyung Hee Univ., Yongin-si (Korea, Republic of)
  5. Purdue Univ., West Lafayette, IN (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1426178
Grant/Contract Number:  
SC0001299
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Park, Woosung, Romano, Giuseppe, Ahn, Ethan C., Kodama, Takashi, Park, Joonsuk, Barako, Michael T., Sohn, Joon, Kim, Soo Jin, Cho, Jungwan, Marconnet, Amy M., Asheghi, Mehdi, Kolpak, Alexie M., and Goodson, Kenneth E. Phonon Conduction in Silicon Nanobeam Labyrinths. United States: N. p., 2017. Web. doi:10.1038/s41598-017-06479-3.
Park, Woosung, Romano, Giuseppe, Ahn, Ethan C., Kodama, Takashi, Park, Joonsuk, Barako, Michael T., Sohn, Joon, Kim, Soo Jin, Cho, Jungwan, Marconnet, Amy M., Asheghi, Mehdi, Kolpak, Alexie M., & Goodson, Kenneth E. Phonon Conduction in Silicon Nanobeam Labyrinths. United States. https://doi.org/10.1038/s41598-017-06479-3
Park, Woosung, Romano, Giuseppe, Ahn, Ethan C., Kodama, Takashi, Park, Joonsuk, Barako, Michael T., Sohn, Joon, Kim, Soo Jin, Cho, Jungwan, Marconnet, Amy M., Asheghi, Mehdi, Kolpak, Alexie M., and Goodson, Kenneth E. Mon . "Phonon Conduction in Silicon Nanobeam Labyrinths". United States. https://doi.org/10.1038/s41598-017-06479-3. https://www.osti.gov/servlets/purl/1426178.
@article{osti_1426178,
title = {Phonon Conduction in Silicon Nanobeam Labyrinths},
author = {Park, Woosung and Romano, Giuseppe and Ahn, Ethan C. and Kodama, Takashi and Park, Joonsuk and Barako, Michael T. and Sohn, Joon and Kim, Soo Jin and Cho, Jungwan and Marconnet, Amy M. and Asheghi, Mehdi and Kolpak, Alexie M. and Goodson, Kenneth E.},
abstractNote = {Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed “line-of-sight” (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m-1K-1 for straight beam to ~31 W m-1 K-1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.},
doi = {10.1038/s41598-017-06479-3},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {Mon Jul 24 00:00:00 EDT 2017},
month = {Mon Jul 24 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport
journal, November 2012


Blocking phonons via nanoscale geometrical design
journal, October 2010


Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
journal, September 2003

  • Shi, Li; Li, Deyu; Yu, Choongho
  • Journal of Heat Transfer, Vol. 125, Issue 5
  • DOI: 10.1115/1.1597619

Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels
journal, April 2014

  • Kucharski, Timothy J.; Ferralis, Nicola; Kolpak, Alexie M.
  • Nature Chemistry, Vol. 6, Issue 5
  • DOI: 10.1038/nchem.1918

Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
journal, February 1998

  • Asheghi, M.; Touzelbaev, M. N.; Goodson, K. E.
  • Journal of Heat Transfer, Vol. 120, Issue 1
  • DOI: 10.1115/1.2830059

Investigation of phonon coherence and backscattering using silicon nanomeshes
journal, January 2017

  • Lee, Jaeho; Lee, Woochul; Wehmeyer, Geoff
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14054

Thermal conductivity of periodic microporous silicon films
journal, February 2004

  • Song, David; Chen, Gang
  • Applied Physics Letters, Vol. 84, Issue 5
  • DOI: 10.1063/1.1642753

Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage
journal, January 2014

  • Ji, Hengxing; Sellan, Daniel P.; Pettes, Michael T.
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE42573H

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Highly sensitive hot electron bolometer based on disordered graphene
journal, December 2013

  • Han, Qi; Gao, Teng; Zhang, Rui
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03533

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Thermal transport in suspended silicon membranes measured by laser-induced transient gratings
journal, December 2016

  • Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.
  • AIP Advances, Vol. 6, Issue 12
  • DOI: 10.1063/1.4968610

Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures
journal, July 2015

  • Nakagawa, Junki; Kage, Yuta; Hori, Takuma
  • Applied Physics Letters, Vol. 107, Issue 2
  • DOI: 10.1063/1.4926653

Thermal Transport Measurements of Individual Multiwalled Nanotubes
journal, October 2001


Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
journal, March 2009


Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


Thermal conduction in lattice–matched superlattices of InGaAs/InAlAs
journal, August 2014

  • Sood, Aditya; Rowlette, Jeremy A.; Caneau, Catherine G.
  • Applied Physics Letters, Vol. 105, Issue 5
  • DOI: 10.1063/1.4892575

Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010

  • Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
  • Nature Nanotechnology, Vol. 5, Issue 10
  • DOI: 10.1038/nnano.2010.149

Toward phonon-boundary engineering in nanoporous materials
journal, July 2014

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Applied Physics Letters, Vol. 105, Issue 3
  • DOI: 10.1063/1.4891362

Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
journal, June 2015

  • Alaie, Seyedhamidreza; Goettler, Drew F.; Su, Mehmet
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8228

Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport
journal, November 2010

  • Hippalgaonkar, Kedar; Huang, Baoling; Chen, Renkun
  • Nano Letters, Vol. 10, Issue 11
  • DOI: 10.1021/nl101671r

On-chip cooling by superlattice-based thin-film thermoelectrics
journal, January 2009

  • Chowdhury, Ihtesham; Prasher, Ravi; Lofgreen, Kelly
  • Nature Nanotechnology, Vol. 4, Issue 4
  • DOI: 10.1038/nnano.2008.417

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Searching for a Better Thermal Battery
journal, March 2012


Phase Change Memory
journal, December 2010


Transient ballistic and diffusive phonon heat transport in thin films
journal, July 1993

  • Joshi, A. A.; Majumdar, A.
  • Journal of Applied Physics, Vol. 74, Issue 1
  • DOI: 10.1063/1.354111

Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution
journal, July 2015

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Journal of Heat Transfer, Vol. 137, Issue 7
  • DOI: 10.1115/1.4029775

Ballistic Phonon Transport in Holey Silicon
journal, April 2015


Sub-10 pW/Hz 0.5 room temperature Ni nano-bolometer
journal, February 2016

  • Yang, Hyun-Ho; Rebeiz, Gabriel M.
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4940975

Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon
journal, December 2015


Thermal conductivity of individual silicon nanowires
journal, October 2003

  • Li, Deyu; Wu, Yiying; Kim, Philip
  • Applied Physics Letters, Vol. 83, Issue 14, p. 2934-2936
  • DOI: 10.1063/1.1616981

Phonon–boundary scattering in ultrathin single-crystal silicon layers
journal, May 2004

  • Liu, W.; Asheghi, M.
  • Applied Physics Letters, Vol. 84, Issue 19
  • DOI: 10.1063/1.1741039

Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon
journal, December 2015


Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport
journal, November 2010

  • Hippalgaonkar, Kedar; Huang, Baoling; Chen, Renkun
  • Nano Letters, Vol. 10, Issue 11
  • DOI: 10.1021/nl101671r

Holey Silicon as an Efficient Thermoelectric Material
journal, October 2010

  • Tang, Jinyao; Wang, Hung-Ta; Lee, Dong Hyun
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102931z

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels
journal, April 2014

  • Kucharski, Timothy J.; Ferralis, Nicola; Kolpak, Alexie M.
  • Nature Chemistry, Vol. 6, Issue 5
  • DOI: 10.1038/nchem.1918

Investigation of phonon coherence and backscattering using silicon nanomeshes
journal, January 2017

  • Lee, Jaeho; Lee, Woochul; Wehmeyer, Geoff
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14054

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010

  • Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
  • Nature Nanotechnology, Vol. 5, Issue 10
  • DOI: 10.1038/nnano.2010.149

Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
journal, March 2009


Thermal conductivity of individual silicon nanowires
journal, October 2003

  • Li, Deyu; Wu, Yiying; Kim, Philip
  • Applied Physics Letters, Vol. 83, Issue 14, p. 2934-2936
  • DOI: 10.1063/1.1616981

Thermal conductivity of periodic microporous silicon films
journal, February 2004

  • Song, David; Chen, Gang
  • Applied Physics Letters, Vol. 84, Issue 5
  • DOI: 10.1063/1.1642753

Phonon–boundary scattering in ultrathin single-crystal silicon layers
journal, May 2004

  • Liu, W.; Asheghi, M.
  • Applied Physics Letters, Vol. 84, Issue 19
  • DOI: 10.1063/1.1741039

Transient ballistic and diffusive phonon heat transport in thin films
journal, July 1993

  • Joshi, A. A.; Majumdar, A.
  • Journal of Applied Physics, Vol. 74, Issue 1
  • DOI: 10.1063/1.354111

Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

Thermal conduction in lattice–matched superlattices of InGaAs/InAlAs
journal, August 2014

  • Sood, Aditya; Rowlette, Jeremy A.; Caneau, Catherine G.
  • Applied Physics Letters, Vol. 105, Issue 5
  • DOI: 10.1063/1.4892575

Sub-10 pW/Hz 0.5 room temperature Ni nano-bolometer
journal, February 2016

  • Yang, Hyun-Ho; Rebeiz, Gabriel M.
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4940975

Thermal transport in suspended silicon membranes measured by laser-induced transient gratings
journal, December 2016

  • Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.
  • AIP Advances, Vol. 6, Issue 12
  • DOI: 10.1063/1.4968610

Heat transport in silicon from first-principles calculations
journal, August 2011


Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation
journal, January 2016


Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures
journal, January 2016


Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution
journal, July 2015

  • Romano, Giuseppe; Grossman, Jeffrey C.
  • Journal of Heat Transfer, Vol. 137, Issue 7
  • DOI: 10.1115/1.4029775

Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Toward phonon-boundary engineering in nanoporous materials
text, January 2014


Works referencing / citing this record:

Impact of thermally dead volume on phonon conduction along silicon nanoladders
journal, January 2018

  • Park, Woosung; Sohn, Joon; Romano, Giuseppe
  • Nanoscale, Vol. 10, Issue 23
  • DOI: 10.1039/c8nr01788c

Probing ballistic thermal conduction in segmented silicon nanowires
journal, January 2019

  • Anufriev, Roman; Gluchko, Sergei; Volz, Sebastian
  • Nanoscale, Vol. 11, Issue 28
  • DOI: 10.1039/c9nr03863a

Investigation of thermal conduction in symmetric and asymmetric nanoporous structures
journal, December 2017

  • Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho
  • Journal of Applied Physics, Vol. 122, Issue 24
  • DOI: 10.1063/1.5006818

Effects of metal silicide inclusion interface and shape on thermal transport in silicon nanocomposites
journal, July 2019

  • Ferrer-Argemi, Laia; Yu, Ziqi; Lee, Jaeho
  • Journal of Applied Physics, Vol. 126, Issue 3
  • DOI: 10.1063/1.5099507

Kink as a new degree of freedom to tune the thermal conductivity of Si nanoribbons
journal, October 2019

  • Yang, Lin; Zhang, Qian; Wei, Zhiyong
  • Journal of Applied Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.5119727

Phonon and heat transport control using pillar-based phononic crystals
journal, August 2018


Understanding the effect of dry etching on nanoscale phase-change memory
journal, September 2019


Large-scale molecular dynamics investigation of geometrical features in nanoporous Si
journal, July 2019


Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques
journal, July 2019

  • Sandonas, Leonardo Medrano; Gutierrez, Rafael; Pecchia, Alessandro
  • Entropy, Vol. 21, Issue 8
  • DOI: 10.3390/e21080735

Large-scale molecular dynamics investigation of geometrical features in nanoporous Si
text, January 2019


Phonon and heat transport control using pillar-based phononic crystals
journal, August 2018