skip to main content

DOE PAGESDOE PAGES

Title: A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States

Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodological challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [3] ;  [4] ;  [5]
  1. Univ. of Montana, Missoula, MT (United States). W.A. Franke College of Forestry and Conservation; Univ. of Montana, Missoula, MT (United States). Numerical Terradynamic Simulation Group
  2. Univ. of Montana, Missoula, MT (United States). Numerical Terradynamic Simulation Group
  3. Univ. of Montana, Missoula, MT (United States). W.A. Franke College of Forestry and Conservation
  4. Google, Inc., Mountain View, CA (United States)
  5. Northern Arizona Univ., Flagstaff, AZ (United States). School of Informatics, Computing and Cyber Systems; Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society
Publication Date:
Grant/Contract Number:
SC0016011; G10AP00129
Type:
Accepted Manuscript
Journal Name:
Remote Sensing
Additional Journal Information:
Journal Volume: 9; Journal Issue: 12; Journal ID: ISSN 2072-4292
Publisher:
MDPI
Research Org:
Univ. of Montana, Missoula, MT (United States)
Sponsoring Org:
USDOE; USGS; National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 42 ENGINEERING; 54 ENVIRONMENTAL SCIENCES; Google Earth Engine; NDVI; vegetation index; Landsat; remote sensing; phenology; surface reflectance
OSTI Identifier:
1426166