skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ion Implantation Doping of Inertial Confinement Fusion Targets

Abstract

Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for the entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1426139
Report Number(s):
LLNL-JRNL-736670
Journal ID: ISSN 1536-1055; TRN: US1802230
Grant/Contract Number:  
AC52-07NA27344; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Fusion Science and Technology
Additional Journal Information:
Journal Volume: 73; Journal Issue: 3; Journal ID: ISSN 1536-1055
Publisher:
American Nuclear Society
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 70 PLASMA PHYSICS AND FUSION; Ion implantation; radiation damage; doping

Citation Formats

Shin, S. J., Lee, J. R. I., van Buuren, T., Chen, K. C., Moreno, K. A., Huang, H., Hoover, D. E., Nikroo, A., Hamza, A. V., and Kucheyev, S. O. Ion Implantation Doping of Inertial Confinement Fusion Targets. United States: N. p., 2017. Web. doi:10.1080/15361055.2017.1392181.
Shin, S. J., Lee, J. R. I., van Buuren, T., Chen, K. C., Moreno, K. A., Huang, H., Hoover, D. E., Nikroo, A., Hamza, A. V., & Kucheyev, S. O. Ion Implantation Doping of Inertial Confinement Fusion Targets. United States. doi:10.1080/15361055.2017.1392181.
Shin, S. J., Lee, J. R. I., van Buuren, T., Chen, K. C., Moreno, K. A., Huang, H., Hoover, D. E., Nikroo, A., Hamza, A. V., and Kucheyev, S. O. Tue . "Ion Implantation Doping of Inertial Confinement Fusion Targets". United States. doi:10.1080/15361055.2017.1392181. https://www.osti.gov/servlets/purl/1426139.
@article{osti_1426139,
title = {Ion Implantation Doping of Inertial Confinement Fusion Targets},
author = {Shin, S. J. and Lee, J. R. I. and van Buuren, T. and Chen, K. C. and Moreno, K. A. and Huang, H. and Hoover, D. E. and Nikroo, A. and Hamza, A. V. and Kucheyev, S. O.},
abstractNote = {Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for the entire range of ion doses studied (2 × 1014 to 1 × 1016 cm-2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~1017 cm-2.},
doi = {10.1080/15361055.2017.1392181},
journal = {Fusion Science and Technology},
number = 3,
volume = 73,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Fig. 1. Fig. 1. : (a) Carousel sample holder and the manipulator for ion implantation doping of spherical targets. (b) Enlarged image of the carousel assembly.

Save / Share:

Works referenced in this record:

Fabrication of Polymer Shells Using a Depolymerizable Mandrel
journal, December 1995

  • Letts, Stephan A.; Fearon, Evelyn M.; Buckley, Steven R.
  • Fusion Technology, Vol. 28, Issue 5
  • DOI: 10.13182/FST28-5-1797

Algorithms for the rapid simulation of Rutherford backscattering spectra
journal, June 1985

  • Doolittle, Lawrence R.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 9, Issue 3
  • DOI: 10.1016/0168-583X(85)90762-1

The PNC/XOR X-ray microprobe station at APS sector 20
journal, November 2007

  • Heald, S. M.; Cross, J. O.; Brewe, D. L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 582, Issue 1
  • DOI: 10.1016/j.nima.2007.08.109

Spinning-wire dosimetry for ion-beam analysis of materials
journal, November 1993

  • Musket, R. G.; Daley, R. S.; Patterson, R. G.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 83, Issue 3
  • DOI: 10.1016/0168-583X(93)95866-4

Xenon doping of glow discharge polymer by ion implantation
journal, May 2012

  • Shin, Swanee J.; Kucheyev, Sergei O.; Orme, Christine A.
  • Journal of Applied Physics, Vol. 111, Issue 9
  • DOI: 10.1063/1.4707949

Recent Progress in Fabrication of High-Strength Glow Discharge Polymer Shells by Optimization of Coating Parameters
journal, May 2002

  • Nikroo, A.; Czechowicz, D. G.; Castillo, E. R.
  • Fusion Science and Technology, Vol. 41, Issue 3P1
  • DOI: 10.13182/FST41-214

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.