skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

Abstract

Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfect isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1426074
Report Number(s):
LLNL-JRNL-737019
Journal ID: ISSN 0021-9606; TRN: US1802217
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 147; Journal Issue: 19; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Zepeda-Ruiz, L. A., Sadigh, B., Chernov, A. A., Haxhimali, T., Samanta, A., Oppelstrup, T., Hamel, S., Benedict, L. X., and Belof, J. L. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations. United States: N. p., 2017. Web. doi:10.1063/1.4997595.
Zepeda-Ruiz, L. A., Sadigh, B., Chernov, A. A., Haxhimali, T., Samanta, A., Oppelstrup, T., Hamel, S., Benedict, L. X., & Belof, J. L. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations. United States. doi:10.1063/1.4997595.
Zepeda-Ruiz, L. A., Sadigh, B., Chernov, A. A., Haxhimali, T., Samanta, A., Oppelstrup, T., Hamel, S., Benedict, L. X., and Belof, J. L. Tue . "Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations". United States. doi:10.1063/1.4997595. https://www.osti.gov/servlets/purl/1426074.
@article{osti_1426074,
title = {Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations},
author = {Zepeda-Ruiz, L. A. and Sadigh, B. and Chernov, A. A. and Haxhimali, T. and Samanta, A. and Oppelstrup, T. and Hamel, S. and Benedict, L. X. and Belof, J. L.},
abstractNote = {Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfect isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.},
doi = {10.1063/1.4997595},
journal = {Journal of Chemical Physics},
number = 19,
volume = 147,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solid-liquid interface free energy through metadynamics simulations
journal, March 2010

  • Angioletti-Uberti, Stefano; Ceriotti, Michele; Lee, Peter D.
  • Physical Review B, Vol. 81, Issue 12
  • DOI: 10.1103/physrevb.81.125416

XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen
journal, January 1901


Solidification of germanium at high undercoolings: morphological stability and the development of grain structure
journal, February 1990


Direct Calculation of the Crystal−Melt Interfacial Free Energy via Molecular Dynamics Computer Simulation
journal, September 2005

  • Laird, Brian B.; Davidchack, Ruslan L.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 38
  • DOI: 10.1021/jp0530754

Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth
journal, February 2015

  • E., J. C.; Wang, L.; Cai, Y.
  • The Journal of Chemical Physics, Vol. 142, Issue 6
  • DOI: 10.1063/1.4907627

Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems
journal, May 1986

  • Broughton, J. Q.; Gilmer, G. H.
  • The Journal of Chemical Physics, Vol. 84, Issue 10
  • DOI: 10.1063/1.449884

Three-dimensional crystal-melt Wulff-shape and interfacial stiffness in the Al-Sn binary system
journal, December 2004


Seeding approach to crystal nucleation
journal, January 2016

  • Espinosa, Jorge R.; Vega, Carlos; Valeriani, Chantal
  • The Journal of Chemical Physics, Vol. 144, Issue 3
  • DOI: 10.1063/1.4939641

Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach
journal, March 2006

  • Bai, Xian-Ming; Li, Mo
  • The Journal of Chemical Physics, Vol. 124, Issue 12
  • DOI: 10.1063/1.2184315

Molecular dynamics study of melting and freezing of small Lennard-Jones clusters
journal, September 1987

  • Honeycutt, J. Dana.; Andersen, Hans C.
  • The Journal of Physical Chemistry, Vol. 91, Issue 19, p. 4950-4963
  • DOI: 10.1021/j100303a014

Calculation of solid–liquid interfacial free energy of Cu by two different methods
journal, August 2013


Temperature dependence of the surface free energy and surface stress: An atomistic calculation for Cu(110)
journal, January 2009


The solid–liquid interfacial free energy of close-packed metals: Hard-spheres and the Turnbull coefficient
journal, August 2001

  • Laird, Brian B.
  • The Journal of Chemical Physics, Vol. 115, Issue 7
  • DOI: 10.1063/1.1391481

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Structure identification methods for atomistic simulations of crystalline materials
journal, May 2012


Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


Systematic analysis of local atomic structure combined with 3D computer graphics
journal, March 1994


Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei
journal, February 1940

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 8, Issue 2
  • DOI: 10.1063/1.1750631

Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
journal, February 1941

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 9, Issue 2, p. 177-184
  • DOI: 10.1063/1.1750872

Crystal-liquid interfacial free energy via thermodynamic integration
journal, July 2014

  • Benjamin, Ronald; Horbach, Jürgen
  • The Journal of Chemical Physics, Vol. 141, Issue 4
  • DOI: 10.1063/1.4891220

Temperature dependence of the crystal–melt interfacial energy of metals
journal, May 2012


Nanoparticle shapes by using Wulff constructions and first-principles calculations
journal, January 2015

  • Barmparis, Georgios D.; Lodziana, Zbigniew; Lopez, Nuria
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.35

Kinetics of Phase Change. I General Theory
journal, December 1939

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 7, Issue 12, p. 1103-1112
  • DOI: 10.1063/1.1750380

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Solid-liquid interfacial free energy out of equilibrium
journal, November 2015


Measurement of anisotropy of crystal-melt interfacial energy for a binary Al–Cu alloy
journal, December 2001


Effect of nonhydrostatic stresses on solid-fluid equilibrium. I. Bulk thermodynamics
journal, November 2010


Crystal-liquid interfacial free energy of hard spheres via a thermodynamic integration scheme
journal, March 2015


Thermal stability of unsupported gold nanoparticle: a molecular dynamics study
journal, July 2002


Solidification microstructures and solid-state parallels: Recent developments, future directions
journal, February 2009


Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations
journal, January 2004