skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene

Abstract

We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm -1K -1 which is much smaller than that of α-phase tungsten (174 Wm -1K -1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and compared using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m -2K -1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m -2K -1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energymore » coupling.« less

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [1]; ORCiD logo [2]
  1. Iowa State Univ., Ames, IA (United States)
  2. Wuhan Univ. (China)
Publication Date:
Research Org.:
Iowa State Univ., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1425961
Grant/Contract Number:  
EE0007686; NE0000671
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Han, Meng, Yuan, Pengyu, Liu, Jing, Si, Shuyao, Zhao, Xiaolong, Yue, Yanan, Wang, Xinwei, and Xiao, Xiangheng. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene. United States: N. p., 2017. Web. doi:10.1038/s41598-017-12389-1.
Han, Meng, Yuan, Pengyu, Liu, Jing, Si, Shuyao, Zhao, Xiaolong, Yue, Yanan, Wang, Xinwei, & Xiao, Xiangheng. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene. United States. doi:10.1038/s41598-017-12389-1.
Han, Meng, Yuan, Pengyu, Liu, Jing, Si, Shuyao, Zhao, Xiaolong, Yue, Yanan, Wang, Xinwei, and Xiao, Xiangheng. Fri . "Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene". United States. doi:10.1038/s41598-017-12389-1. https://www.osti.gov/servlets/purl/1425961.
@article{osti_1425961,
title = {Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene},
author = {Han, Meng and Yuan, Pengyu and Liu, Jing and Si, Shuyao and Zhao, Xiaolong and Yue, Yanan and Wang, Xinwei and Xiao, Xiangheng},
abstractNote = {We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm-1K-1 which is much smaller than that of α-phase tungsten (174 Wm-1K-1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and compared using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m-2K-1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m-2K-1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.},
doi = {10.1038/s41598-017-12389-1},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Impermeable Atomic Membranes from Graphene Sheets
journal, August 2008

  • Bunch, J. Scott; Verbridge, Scott S.; Alden, Jonathan S.
  • Nano Letters, Vol. 8, Issue 8
  • DOI: 10.1021/nl801457b

Manipulating Thermal Conductance at Metal–Graphene Contacts via Chemical Functionalization
journal, January 2012

  • Hopkins, Patrick E.; Baraket, Mira; Barnat, Edward V.
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203060j

Electrical Resistivity Model for Polycrystalline Films: the case of Specular Reflection at External Surfaces
journal, June 1969

  • Mayadas, A. F.; Shatzkes, M.; Janak, J. F.
  • Applied Physics Letters, Vol. 14, Issue 11
  • DOI: 10.1063/1.1652680

Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering
journal, January 2000

  • Shen, Y. G.; Mai, Y. W.; Zhang, Q. C.
  • Journal of Applied Physics, Vol. 87, Issue 1
  • DOI: 10.1063/1.371841

Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods
journal, September 2005


Oxidation of tungsten and tungsten carbide in dry and humid atmospheres
journal, January 1996

  • Warren, Anna; Nylund, Anders; Olefjord, Ingemar
  • International Journal of Refractory Metals and Hard Materials, Vol. 14, Issue 5-6
  • DOI: 10.1016/S0263-4368(96)00027-3

Superconductivity of Tungsten
journal, June 1964


Controlled nanostructuration of polycrystalline tungsten thin films
journal, May 2013

  • Girault, B.; Eyidi, D.; Goudeau, P.
  • Journal of Applied Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.4803699

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure
journal, September 2014

  • Jagannadham, K.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 5
  • DOI: 10.1116/1.4890576

The conductivity of thin metallic films according to the electron theory of metals
journal, January 1938


Highly thermally conductive and mechanically strong graphene fibers
journal, September 2015


Energy Dissipation in Graphene Field-Effect Transistors
journal, May 2009

  • Freitag, Marcus; Steiner, Mathias; Martin, Yves
  • Nano Letters, Vol. 9, Issue 5, p. 1883-1888
  • DOI: 10.1021/nl803883h

Thermal Conductivity of the Elements
journal, April 1972

  • Ho, C. Y.; Powell, R. W.; Liley, P. E.
  • Journal of Physical and Chemical Reference Data, Vol. 1, Issue 2
  • DOI: 10.1063/1.3253100

Elektrolysen in Phosphatschmelzen. I. Die elektrolytische Gewinnung von ?- und ?-Wolfram
journal, May 1931

  • Hartmann, Hellmuth; Ebert, Fritz; Bretschneider, Otto
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 198, Issue 1
  • DOI: 10.1002/zaac.19311980111

Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces
journal, February 1970


Inhomogeneous strain states in sputter deposited tungsten thin films
journal, November 1997

  • Noyan, I. C.; Shaw, T. M.; Goldsmith, C. C.
  • Journal of Applied Physics, Vol. 82, Issue 9
  • DOI: 10.1063/1.366237

Superconductivity in Evaporated Tungsten Films
journal, April 1968

  • Basavaiah, S.; Pollack, S. R.
  • Applied Physics Letters, Vol. 12, Issue 8
  • DOI: 10.1063/1.1651982

Negligible Electronic Contribution to Heat Transfer across Intrinsic Metal/Graphene Interfaces
journal, August 2017


Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering
journal, June 1973

  • Petroff, P.; Sheng, T. T.; Sinha, A. K.
  • Journal of Applied Physics, Vol. 44, Issue 6
  • DOI: 10.1063/1.1662611

Superconductivity in Films of β Tungsten and Other Transition Metals
journal, August 1965


Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene
journal, February 2007

  • Graf, D.; Molitor, F.; Ensslin, K.
  • Nano Letters, Vol. 7, Issue 2, p. 238-242
  • DOI: 10.1021/nl061702a

Sputter-deposited amorphous-like tungsten
journal, March 2004


Graphene electrostatic microphone and ultrasonic radio
journal, July 2015

  • Zhou, Qin; Zheng, Jinglin; Onishi, Seita
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 29
  • DOI: 10.1073/pnas.1505800112

Low energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments
journal, March 2016


Thermal and Electrical Conduction in Ultrathin Metallic Films: 7 nm down to Sub-Nanometer Thickness
journal, February 2013


Graphene nano-ribbon electronics
journal, December 2007

  • Chen, Zhihong; Lin, Yu-Ming; Rooks, Michael J.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, Issue 2, p. 228-232
  • DOI: 10.1016/j.physe.2007.06.020

Radiation tolerance of Cu/W multilayered nanocomposites
journal, June 2011


Electrical and Thermal Conduction in Atomic Layer Deposition Nanobridges Down to 7 nm Thickness
journal, January 2012

  • Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203548w

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Plasma‐enhanced chemical vapor deposition of β‐tungsten, a metastable phase
journal, September 1984

  • Tang, C. C.; Hess, D. W.
  • Applied Physics Letters, Vol. 45, Issue 6
  • DOI: 10.1063/1.95337

Heat Conduction across Monolayer and Few-Layer Graphenes
journal, November 2010

  • Koh, Yee Kan; Bae, Myung-Ho; Cahill, David G.
  • Nano Letters, Vol. 10, Issue 11, p. 4363-4368
  • DOI: 10.1021/nl101790k

Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys
journal, April 2016


XRD line profile analysis of tungsten thin films
journal, October 2005


Phase transformation of thin sputter-deposited tungsten films at room temperature
journal, January 2002

  • Rossnagel, S. M.; Noyan, I. C.; Cabral, C.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 20, Issue 5
  • DOI: 10.1116/1.1506905

Pure Tungsten Direct from Ore
journal, January 1943

  • Fink, Colin G.; Ma, Chuk Ching
  • Transactions of The Electrochemical Society, Vol. 84, Issue 1
  • DOI: 10.1149/1.3071553

Phase transformation of sputter deposited tungsten thin films with A‐15 structure
journal, June 1996

  • O’Keefe, M. J.; Grant, J. T.
  • Journal of Applied Physics, Vol. 79, Issue 12
  • DOI: 10.1063/1.362584

Measurement of Sheet Resistivities with the Four-Point Probe
journal, May 1958


Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms
journal, July 2011