skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on September 1, 2018

Title: A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy

A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicality and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS 2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.
Authors:
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemistry
Publication Date:
Grant/Contract Number:
SC0010326; CHE-0840494
Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 147; Journal Issue: 9; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Research Org:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1425951
Alternate Identifier(s):
OSTI ID: 1378126