skip to main content

DOE PAGESDOE PAGES

Title: Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3

Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable of achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based,more » lead-free perovskite solar cells.« less
Authors:
ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
Publication Date:
Grant/Contract Number:
SC0001059
Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 8; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Research Org:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1425891