DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li 3 N

Abstract

We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2 ( Li1-xFex) N with x = 0 and x ≈ 0.30 . Magnetic hysteresis emerges at temperatures below T ≈ 50 K with coercivity fields of up to μ0H = 11.6 T at T = 2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f = 10 – 10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈ 1100 K (90 meV). The relaxation times follow Arrhenius behavior for T > 25 K . For T < 10 K , however, the relaxation times of τ ≈ 1010s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J mol-1Fe K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2 ( Li1-xFe x) N as ferromagnetmore » is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.« less

Authors:
 [1];  [2];  [3];  [4];  [4];  [5];  [1];  [3];  [6]
  1. Univ. of Augsburg (Germany). EP VI, Center for Electronic Correlations and Magnetism, Inst. of Physics
  2. Univ. of Augsburg (Germany). EP VI, Center for Electronic Correlations and Magnetism, Inst. of Physics; Ames Lab. and Iowa State Univ., Ames, IA (United States)
  3. Univ. of Augsburg (Germany). Chair of Solid State Chemistry, Inst. of Physics
  4. Technische Universitat Dresden, Dresden (Germany). Inst. for Solid State and Materials Physics
  5. Univ. of Augsburg (Germany). EP VI, Center for Electronic Correlations and Magnetism, Inst. of Physics; IIT Tirupati, Tirupati (India). Dept. of Physics
  6. Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE; German Research Foundation (DFG)
OSTI Identifier:
1425481
Alternate Identifier(s):
OSTI ID: 1422441
Report Number(s):
IS-J-9591
Journal ID: ISSN 2469-9950; PRBMDO; TRN: US1802113
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 6; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Fix, M., Jesche, A., Jantz, S. G., Bräuninger, S. A., Klauss, H. -H., Manna, R. S., Pietsch, I. M., Höppe, H. A., and Canfield, P. C. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.064419.
Fix, M., Jesche, A., Jantz, S. G., Bräuninger, S. A., Klauss, H. -H., Manna, R. S., Pietsch, I. M., Höppe, H. A., & Canfield, P. C. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N. United States. https://doi.org/10.1103/PhysRevB.97.064419
Fix, M., Jesche, A., Jantz, S. G., Bräuninger, S. A., Klauss, H. -H., Manna, R. S., Pietsch, I. M., Höppe, H. A., and Canfield, P. C. Fri . "Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N". United States. https://doi.org/10.1103/PhysRevB.97.064419. https://www.osti.gov/servlets/purl/1425481.
@article{osti_1425481,
title = {Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N},
author = {Fix, M. and Jesche, A. and Jantz, S. G. and Bräuninger, S. A. and Klauss, H. -H. and Manna, R. S. and Pietsch, I. M. and Höppe, H. A. and Canfield, P. C.},
abstractNote = {We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2 ( Li1-xFex) N with x = 0 and x ≈ 0.30 . Magnetic hysteresis emerges at temperatures below T ≈ 50 K with coercivity fields of up to μ0H = 11.6 T at T = 2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f = 10 – 10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈ 1100 K (90 meV). The relaxation times follow Arrhenius behavior for T > 25 K . For T < 10 K , however, the relaxation times of τ ≈ 1010s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J mol-1Fe K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2 ( Li1-xFe x) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.},
doi = {10.1103/PhysRevB.97.064419},
journal = {Physical Review B},
number = 6,
volume = 97,
place = {United States},
year = {Fri Feb 23 00:00:00 EST 2018},
month = {Fri Feb 23 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Mechanism for Non-stoichiometry in the Lithium Amide/Lithium Imide Hydrogen Storage Reaction
journal, February 2007

  • David, William I. F.; Jones, Martin O.; Gregory, Duncan H.
  • Journal of the American Chemical Society, Vol. 129, Issue 6
  • DOI: 10.1021/ja066016s

Single-Molecule Nanomagnets
journal, August 2010


Novel features in the relaxation times of Mn12Ac
journal, February 1995


Formation of Pancakelike Ising Domains and Giant Magnetic Coercivity in Ferrimagnetic LuFe 2 O 4
journal, September 2008


Band-filling effect on magnetic anisotropy using a Green's function method
journal, July 2015


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Spin-reversal energy barriers of 305 K for Fe 2+ d 6 ions with linear ligand coordination
journal, January 2017

  • Xu, Lei; Zangeneh, Ziba; Yadav, Ravi
  • Nanoscale, Vol. 9, Issue 30
  • DOI: 10.1039/C7NR03041J

Direct solid-state synthesis and large-capacity anode operation of Li3−xFexN
journal, January 2011

  • Yamada, Atsuo; Matsumoto, Shingo; Nakamura, Yoichi
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm03735d

Magnetic order in the frustrated Ising-like chain compound Sr 3 Ni Ir O 6
journal, July 2014


Magnetic blocking in a linear iron(I) complex
journal, May 2013

  • Zadrozny, Joseph M.; Xiao, Dianne J.; Atanasov, Mihail
  • Nature Chemistry, Vol. 5, Issue 7
  • DOI: 10.1038/nchem.1630

High-temperature solution growth of intermetallic single crystals and quasicrystals
journal, May 2001


Structural studies of Li3N using neutron powder diffraction
journal, June 2007


Moessfit: A free Mössbauer fitting program
journal, March 2016


Highly Reduced Double-Decker Single-Molecule Magnets Exhibiting Slow Magnetic Relaxation
journal, March 2013

  • Gonidec, Mathieu; Krivokapic, Itana; Vidal-Gancedo, Jose
  • Inorganic Chemistry, Vol. 52, Issue 8
  • DOI: 10.1021/ic3027418

Magnetic bistability in a metal-ion cluster
journal, September 1993

  • Sessoli, R.; Gatteschi, D.; Caneschi, A.
  • Nature, Vol. 365, Issue 6442
  • DOI: 10.1038/365141a0

Free energy model for hysteresis in magnetostrictive transducers
journal, January 2003

  • Smith, Ralph C.; Dapino, Marcelo J.; Seelecke, Stefan
  • Journal of Applied Physics, Vol. 93, Issue 1
  • DOI: 10.1063/1.1524312

Electronic structure of lithium nitridoferrate: Effects of correlation and spin-orbit coupling
journal, November 2002


Magnetization and Spin Correlation of Two-Dimensional Triangular Antiferromagnet LuFe 2 O 4
journal, May 1993

  • Iida, Junji; Tanaka, Midori; Nakagawa, Yasuaki
  • Journal of the Physical Society of Japan, Vol. 62, Issue 5
  • DOI: 10.1143/JPSJ.62.1723

Magnetic properties of rare‐earth‐iron‐boron permanent magnet materials
journal, April 1985

  • Sagawa, M.; Fujimura, S.; Yamamoto, H.
  • Journal of Applied Physics, Vol. 57, Issue 8
  • DOI: 10.1063/1.334629

Molecular Nanomagnets
book, January 2006


Lithium nitride (Li3N): heat capacity from 5 to 350 K and thermochemical properties to 1086 K
journal, July 1978


Apparatus for measuring the thermal expansion of solids between 1.5 and 380K
journal, May 1983


In situ— High Temperature Mössbauer Spectroscopy of Iron Nitrides and Nitridoferrates
journal, September 2003

  • Ksenofontov, V.; Reiman, S.; Waldeck, M.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 629, Issue 10
  • DOI: 10.1002/zaac.200300135

Frustrated pyrochlore oxides, Y 2 Mn 2 O 7 , Ho 2 Mn 2 O 7 , and Yb 2 Mn 2 O 7 : Bulk magnetism and magnetic microstructure
journal, September 1996


Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates
journal, September 2014


Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system
journal, June 2003


Supermagnetism
journal, December 2008


High-field magnetization of R2Fe14B single crystals
journal, February 1986


Influence of Peripheral Substitution on the Magnetic Behavior of Single-Ion Magnets Based on Homo- and Heteroleptic Tb III Bis(phthalocyaninate)
journal, November 2012

  • Ganivet, Carolina R.; Ballesteros, Beatriz; de la Torre, Gema
  • Chemistry - A European Journal, Vol. 19, Issue 4
  • DOI: 10.1002/chem.201202600

Nuclear-spin–driven resonant tunnelling of magnetisation in Mn 12 acetate
journal, July 1999


Large Orbital Moments and Internal Magnetic Fields in Lithium Nitridoferrate(I)
journal, May 2002


Mesoscopic quantum tunneling of the magnetization
journal, February 1995


Magnetic properties of Sr 3 NiIrO 6 and Sr 3 CoIrO 6 : Magnetic hysteresis with coercive fields of up to 55 T
journal, December 2016


Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials
journal, January 2003

  • Gatteschi, Dante; Sessoli, Roberta
  • Angewandte Chemie International Edition, Vol. 42, Issue 3
  • DOI: 10.1002/anie.200390099

A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction
journal, September 2012

  • Küchler, R.; Bauer, T.; Brando, M.
  • Review of Scientific Instruments, Vol. 83, Issue 9
  • DOI: 10.1063/1.4748864

Phase Transformations of Lithium Nitride under Pressure
journal, August 1988

  • Beister, Heinz Jürgen; Haag, Sabine; Kniep, Rüdiger
  • Angewandte Chemie International Edition in English, Vol. 27, Issue 8
  • DOI: 10.1002/anie.198811011

Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient
journal, December 2010

  • Gutfleisch, Oliver; Willard, Matthew A.; Brück, Ekkes
  • Advanced Materials, Vol. 23, Issue 7
  • DOI: 10.1002/adma.201002180

Quantum Tunneling of the Magnetization in an Iron Cluster Nanomagnet
journal, June 1997


Giant magnetic anisotropy and tunnelling of the magnetization in Li2(Li1−xFex)N
journal, February 2014

  • Jesche, A.; McCallum, R. W.; Thimmaiah, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4333

Magnetic relaxation pathways in lanthanide single-molecule magnets
journal, July 2013

  • Blagg, Robin J.; Ungur, Liviu; Tuna, Floriana
  • Nature Chemistry, Vol. 5, Issue 8
  • DOI: 10.1038/nchem.1707

Magnetic properties and crystal structure of Sr 3 CoIrO 6 and Sr 3 NiIrO 6
journal, October 2012


Strong or weak ferromagnetism in transition metals
journal, August 1991


Single crystal growth from light, volatile and reactive materials using lithium and calcium flux
journal, April 2014