skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

Abstract

Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [5]; ORCiD logo [5];  [8];  [9];  [7];  [10];  [11];  [5];  [11];  [5];  [7];  [5];  [2] more »;  [5];  [5];  [2];  [2]; ORCiD logo [5];  [5];  [12];  [5];  [11]; ORCiD logo [13];  [5];  [14];  [5]; ORCiD logo [7];  [15];  [2];  [16];  [17] « less
  1. Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  2. Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  4. Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics
  6. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; European X-ray Free-Electron Laser (XFEL), Hamburg (Germany)
  7. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science
  8. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics, and Science for Life Lab., Division of Scientific Computing, Dept. of Information Technology
  9. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Czech Academy of Science, Prague (Czech Republic). ELI Beamlines, Inst. of Physics; Chalmers Univ. of Technology, Gothenburg (Sweden)
  10. Czech Academy of Science, Prague (Czech Republic). ELI Beamlines, Inst. of Physics
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  12. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; KTH Royal Inst. of Technology, Stockholm (Sweden). AlbaNova Univ. Center, Dept. of Applied Physics, and Biomedical and X-ray Physics
  13. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics, and Dept. of Physics and Astronomy
  14. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  15. Research Inst. for Solid State Physics and Optics, Budapest (Hungary)
  16. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; European X-ray Free-Electron Laser (XFEL), Hamburg (Germany); Czech Academy of Science, Prague (Czech Republic). ELI Beamlines, Inst. of Physics
  17. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; German Federal Ministry of Education and Research (BMBF); German Research Foundation (DFG); Swedish Research Council (SRC); USDOE
OSTI Identifier:
1425332
Alternate Identifier(s):
OSTI ID: 1423121; OSTI ID: 1433977
Report Number(s):
SLAC-PUB-17234; BNL-203512-2018-JAAM
Journal ID: ISSN 1749-4885; PII: 110; TRN: US1801707
Grant/Contract Number:  
AC02-76SF00515; AC02-06CH11357; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Photonics
Additional Journal Information:
Journal Volume: 12; Journal Issue: 3; Journal ID: ISSN 1749-4885
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 77 NANOSCIENCE AND NANOTECHNOLOGY; Ultrafast photonics; X-rays; Imaging and sensing; Nanoparticles

Citation Formats

Gorkhover, Tais, Ulmer, Anatoli, Ferguson, Ken, Bucher, Max, Maia, Filipe R. N. C., Bielecki, Johan, Ekeberg, Tomas, Hantke, Max F., Daurer, Benedikt J., Nettelblad, Carl, Andreasson, Jakob, Barty, Anton, Bruza, Petr, Carron, Sebastian, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Okamoto, Kenta, Pietrini, Alberto, Rupp, Daniela, Sauppe, Mario, van der Schot, Gijs, Seibert, Marvin, Sellberg, Jonas A., Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Chapman, Henry N., Faigel, Gyula, Möller, Thomas, Hajdu, Janos, and Bostedt, Christoph. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. United States: N. p., 2018. Web. doi:10.1038/s41566-018-0110-y.
Gorkhover, Tais, Ulmer, Anatoli, Ferguson, Ken, Bucher, Max, Maia, Filipe R. N. C., Bielecki, Johan, Ekeberg, Tomas, Hantke, Max F., Daurer, Benedikt J., Nettelblad, Carl, Andreasson, Jakob, Barty, Anton, Bruza, Petr, Carron, Sebastian, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Okamoto, Kenta, Pietrini, Alberto, Rupp, Daniela, Sauppe, Mario, van der Schot, Gijs, Seibert, Marvin, Sellberg, Jonas A., Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Chapman, Henry N., Faigel, Gyula, Möller, Thomas, Hajdu, Janos, & Bostedt, Christoph. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. United States. doi:10.1038/s41566-018-0110-y.
Gorkhover, Tais, Ulmer, Anatoli, Ferguson, Ken, Bucher, Max, Maia, Filipe R. N. C., Bielecki, Johan, Ekeberg, Tomas, Hantke, Max F., Daurer, Benedikt J., Nettelblad, Carl, Andreasson, Jakob, Barty, Anton, Bruza, Petr, Carron, Sebastian, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Okamoto, Kenta, Pietrini, Alberto, Rupp, Daniela, Sauppe, Mario, van der Schot, Gijs, Seibert, Marvin, Sellberg, Jonas A., Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Chapman, Henry N., Faigel, Gyula, Möller, Thomas, Hajdu, Janos, and Bostedt, Christoph. Mon . "Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles". United States. doi:10.1038/s41566-018-0110-y. https://www.osti.gov/servlets/purl/1425332.
@article{osti_1425332,
title = {Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles},
author = {Gorkhover, Tais and Ulmer, Anatoli and Ferguson, Ken and Bucher, Max and Maia, Filipe R. N. C. and Bielecki, Johan and Ekeberg, Tomas and Hantke, Max F. and Daurer, Benedikt J. and Nettelblad, Carl and Andreasson, Jakob and Barty, Anton and Bruza, Petr and Carron, Sebastian and Hasse, Dirk and Krzywinski, Jacek and Larsson, Daniel S. D. and Morgan, Andrew and Mühlig, Kerstin and Müller, Maria and Okamoto, Kenta and Pietrini, Alberto and Rupp, Daniela and Sauppe, Mario and van der Schot, Gijs and Seibert, Marvin and Sellberg, Jonas A. and Svenda, Martin and Swiggers, Michelle and Timneanu, Nicusor and Westphal, Daniel and Williams, Garth and Zani, Alessandro and Chapman, Henry N. and Faigel, Gyula and Möller, Thomas and Hajdu, Janos and Bostedt, Christoph},
abstractNote = {Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.},
doi = {10.1038/s41566-018-0110-y},
journal = {Nature Photonics},
number = 3,
volume = 12,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: In-flight holography principle Diffraction patterns in the first row are calculated from objects and geometries displayed in the second row. The diffraction pattern shown in a is produced by two equally sized spheres located in a plane perpendicular to the laser direction. It exhibits two dominant features. First,more » the ring-type envelope reflects the size of a single sphere. Second, fine straight modulation lines mirror the lateral distance between the spheres, similarly to Young's double slit experiment. If one sphere is considerably smaller than the other, a second envelope with wider ring spacing appears as demonstrated in case b. Here, the different sizes of the spheres and the lateral distances are unambiguously encoded into the diffraction. In case c, the differently sized spheres are shifted along the laser direction. This shift in the realspace translates into curvature of the fine modulation lines in the reciprocal space. The combination of distinct diffraction features such as the envelopes and fine modulations carry a unique three-dimensional relative positions map of the two spheres. This map is used for structure recovery in in-flight holography, where the large sphere is replaced by an unknown sample. The smaller sphere can be regarded as a source of a Fourier holography-type reference wave front.« less

Save / Share:

Works referenced in this record:

Single mimivirus particles intercepted and imaged with an X-ray laser
journal, February 2011

  • Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.
  • Nature, Vol. 470, Issue 7332
  • DOI: 10.1038/nature09748

Generation and structure of extremely large clusters in pulsed jets
journal, July 2014

  • Rupp, Daniela; Adolph, Marcus; Flückiger, Leonie
  • The Journal of Chemical Physics, Vol. 141, Issue 4
  • DOI: 10.1063/1.4890323

High-throughput imaging of heterogeneous cell organelles with an X-ray laser
journal, November 2014


Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects
journal, January 1998

  • Miao, J.; Sayre, D.; Chapman, H. N.
  • Journal of the Optical Society of America A, Vol. 15, Issue 6
  • DOI: 10.1364/JOSAA.15.001662

Ultrafast X-Ray Scattering of Xenon Nanoparticles: Imaging Transient States of Matter
journal, February 2012


A New Microscopic Principle
journal, May 1948


Toward a practical X-ray Fourier holography at high resolution
journal, July 2001

  • Howells, M. R.; Jacobsen, C. J.; Marchesini, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 467-468
  • DOI: 10.1016/S0168-9002(01)00498-3

Extracting depth information of 3-dimensional structures from a single-view X-ray Fourier-transform hologram
journal, January 2014


First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-Ray Regime
journal, January 2012


Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight
journal, June 2012

  • Loh, N. D.; Hampton, C. Y.; Martin, A. V.
  • Nature, Vol. 486, Issue 7404
  • DOI: 10.1038/nature11222

Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser
journal, March 2015


Shapes and vorticities of superfluid helium nanodroplets
journal, August 2014


Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles
journal, January 2016


Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
journal, September 2017


Use of extended and prepared reference objects in experimental Fourier transform x-ray holography
journal, September 2004

  • He, H.; Weierstall, U.; Spence, J. C. H.
  • Applied Physics Letters, Vol. 85, Issue 13
  • DOI: 10.1063/1.1795360

Three-Dimensional X-Ray Fourier Transform Holography: The Bragg Case
journal, April 2010


Multiple reference Fourier transform holography with soft x rays
journal, October 2006

  • Schlotter, W. F.; Rick, R.; Chen, K.
  • Applied Physics Letters, Vol. 89, Issue 16
  • DOI: 10.1063/1.2364259

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

Massively parallel X-ray holography
journal, August 2008

  • Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.
  • Nature Photonics, Vol. 2, Issue 9
  • DOI: 10.1038/nphoton.2008.154

Structural Studies of the Giant Mimivirus
journal, April 2009


Lensless imaging of magnetic nanostructures by X-ray spectro-holography
journal, December 2004

  • Eisebitt, S.; Lüning, J.; Schlotter, W. F.
  • Nature, Vol. 432, Issue 7019
  • DOI: 10.1038/nature03139

The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
journal, April 2015

  • Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004646

Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging
journal, March 2010


Wavefield back-propagation in high-resolution X-ray holography with a movable field of view
journal, January 2010

  • Guehrs, Erik; Günther, Christian M.; Pfau, Bastian
  • Optics Express, Vol. 18, Issue 18
  • DOI: 10.1364/OE.18.018922

Coherent lensless X-ray imaging
journal, November 2010


Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Identification of twinned gas phase clusters by single-shot scattering with intense soft x-ray pulses
journal, May 2012


Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields
journal, April 2011

  • Zherebtsov, Sergey; Fennel, Thomas; Plenge, Jürgen
  • Nature Physics, Vol. 7, Issue 8
  • DOI: 10.1038/nphys1983

The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering
journal, February 2015

  • Barke, Ingo; Hartmann, Hannes; Rupp, Daniela
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7187

X-ray image reconstruction from a diffraction pattern alone
journal, October 2003


Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources
journal, March 2010

  • Strüder, Lothar; Epp, Sascha; Rolles, Daniel
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 614, Issue 3
  • DOI: 10.1016/j.nima.2009.12.053

Imaging single cells in a beam of live cyanobacteria with an X-ray laser
journal, February 2015

  • van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6704

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.