skip to main content

DOE PAGESDOE PAGES

Title: Gradient flows without blow-up for Lefschetz thimbles

We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.
Authors:
ORCiD logo [1] ;  [1] ;  [2]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). RIKEN Research Center
  2. Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy
Publication Date:
Report Number(s):
RBRC-1241; BNL-114873-2017-JAAM
Journal ID: ISSN 1029-8479; TRN: US1802056
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2017; Journal Issue: 10; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS
OSTI Identifier:
1425163

Tanizaki, Yuya, Nishimura, Hiromichi, and Verbaarschot, Jacobus J. M.. Gradient flows without blow-up for Lefschetz thimbles. United States: N. p., Web. doi:10.1007/JHEP10(2017)100.
Tanizaki, Yuya, Nishimura, Hiromichi, & Verbaarschot, Jacobus J. M.. Gradient flows without blow-up for Lefschetz thimbles. United States. doi:10.1007/JHEP10(2017)100.
Tanizaki, Yuya, Nishimura, Hiromichi, and Verbaarschot, Jacobus J. M.. 2017. "Gradient flows without blow-up for Lefschetz thimbles". United States. doi:10.1007/JHEP10(2017)100. https://www.osti.gov/servlets/purl/1425163.
@article{osti_1425163,
title = {Gradient flows without blow-up for Lefschetz thimbles},
author = {Tanizaki, Yuya and Nishimura, Hiromichi and Verbaarschot, Jacobus J. M.},
abstractNote = {We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.},
doi = {10.1007/JHEP10(2017)100},
journal = {Journal of High Energy Physics (Online)},
number = 10,
volume = 2017,
place = {United States},
year = {2017},
month = {10}
}