skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends

Abstract

The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. Here, we demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomain structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies.

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [1];  [5];  [1]
  1. Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering
  2. Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering and Dept. of Chemistry; Anhui Univ., Hefei (China). School of Chemistry and Chemical Engineering
  3. Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering; Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Materials Science and Engineering
  4. Univ. of Akron, OH (United States). Dept. of Polymer Engineering, Polymer Engineering Academic Center
  5. Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Carnegie Mellon Univ., Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF); China Scholarship Council
OSTI Identifier:
1425156
Grant/Contract Number:  
EE0006702; DMR-1410845; DMR-1501324; DMR-1411046; MCF-677785
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 2; Journal Issue: 12; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nanoparticle; colloid; Polymer; brush; phase separation; controlled radical polymerization; ATRP; Self-assembly; surface; Nanocomposite

Citation Formats

Schmitt, Michael, Zhang, Jianan, Lee, Jaejun, Lee, Bongjoon, Ning, Xin, Zhang, Ren, Karim, Alamgir, Davis, Robert F., Matyjaszewski, Krzysztof, and Bockstaller, Michael R. Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends. United States: N. p., 2016. Web. doi:10.1126/sciadv.1601484.
Schmitt, Michael, Zhang, Jianan, Lee, Jaejun, Lee, Bongjoon, Ning, Xin, Zhang, Ren, Karim, Alamgir, Davis, Robert F., Matyjaszewski, Krzysztof, & Bockstaller, Michael R. Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends. United States. doi:10.1126/sciadv.1601484.
Schmitt, Michael, Zhang, Jianan, Lee, Jaejun, Lee, Bongjoon, Ning, Xin, Zhang, Ren, Karim, Alamgir, Davis, Robert F., Matyjaszewski, Krzysztof, and Bockstaller, Michael R. Fri . "Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends". United States. doi:10.1126/sciadv.1601484. https://www.osti.gov/servlets/purl/1425156.
@article{osti_1425156,
title = {Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends},
author = {Schmitt, Michael and Zhang, Jianan and Lee, Jaejun and Lee, Bongjoon and Ning, Xin and Zhang, Ren and Karim, Alamgir and Davis, Robert F. and Matyjaszewski, Krzysztof and Bockstaller, Michael R.},
abstractNote = {The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. Here, we demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomain structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies.},
doi = {10.1126/sciadv.1601484},
journal = {Science Advances},
number = 12,
volume = 2,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanoscience
journal, December 2008

  • Odom, Teri W.; Pileni, Marie-Paule
  • Accounts of Chemical Research, Vol. 41, Issue 12
  • DOI: 10.1021/ar800253n

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

The role of interparticle and external forces in nanoparticle assembly
journal, July 2008

  • Min, Younjin; Akbulut, Mustafa; Kristiansen, Kai
  • Nature Materials, Vol. 7, Issue 7
  • DOI: 10.1038/nmat2206

Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP
journal, January 2012

  • Choi, Jihoon; Hui, Chin Ming; Pietrasik, Joanna
  • Soft Matter, Vol. 8, Issue 15
  • DOI: 10.1039/c2sm06915f

Effect of Shell Architecture on the Static and Dynamic Properties of Polymer-Coated Particles in Solution
journal, April 2009

  • Voudouris, Panayiotis; Choi, Jihoon; Dong, Hongchen
  • Macromolecules, Vol. 42, Issue 7
  • DOI: 10.1021/ma802878r

Thermodynamics of PMMA/SAN Blends:  Application of the Sanchez−Lacombe Lattice Fluid Theory
journal, August 2001

  • Wen, Gangyao; Sun, Zhaoyan; Shi, Tongfei
  • Macromolecules, Vol. 34, Issue 18
  • DOI: 10.1021/ma010023d

A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids
journal, September 2015

  • Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9309

Performance of Dielectric Nanocomposites: Matrix-Free, Hairy Nanoparticle Assemblies and Amorphous Polymer–Nanoparticle Blends
journal, November 2014

  • Grabowski, Christopher A.; Koerner, Hilmar; Meth, Jeffrey S.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 23
  • DOI: 10.1021/am506521r

Null-Scattering Hybrid Particles Using Controlled Radical Polymerization
journal, December 2007


Assemblies of Titanium Dioxide-Polystyrene Hybrid Nanoparticles for Dielectric Applications
journal, March 2010

  • Tchoul, Maxim N.; Fillery, Scott P.; Koerner, Hilmar
  • Chemistry of Materials, Vol. 22, Issue 5
  • DOI: 10.1021/cm903182n

Processing fragile matter: effect of polymer graft modification on the mechanical properties and processibility of (nano-) particulate solids
journal, January 2016

  • Schmitt, Michael; Choi, Jihoon; Min Hui, Chin
  • Soft Matter, Vol. 12, Issue 15
  • DOI: 10.1039/C6SM00095A

Phase-Separation-Induced Surface Patterns in Thin Polymer Blend Films
journal, February 1998

  • Karim, A.; Slawecki, T. M.; Kumar, S. K.
  • Macromolecules, Vol. 31, Issue 3
  • DOI: 10.1021/ma970687g

Surface Morphology of Annealed Polystyrene and Poly(methyl methacrylate) Thin Film Blends and Bilayers
journal, May 2003

  • Harris, Mark; Appel, Guenter; Ade, Harald
  • Macromolecules, Vol. 36, Issue 9
  • DOI: 10.1021/ma0257043

Nanoscale Forces and Their Uses in Self-Assembly
journal, July 2009

  • Bishop, Kyle J. M.; Wilmer, Christopher E.; Soh, Siowling
  • Small, Vol. 5, Issue 14
  • DOI: 10.1002/smll.200900358

Commercializing nanotechnology
journal, October 2003


Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization
journal, October 2001

  • Pyun, Jeffrey; Matyjaszewski, Krzysztof
  • Chemistry of Materials, Vol. 13, Issue 10
  • DOI: 10.1021/cm011065j

Nanocomposites: Structure, Phase Behavior, and Properties
journal, June 2010


Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials
journal, August 2013

  • Hui, Chin Ming; Pietrasik, Joanna; Schmitt, Michael
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4023634

Nanostructured functional materials prepared by atom transfer radical polymerization
journal, June 2009

  • Matyjaszewski, Krzysztof; Tsarevsky, Nicolay V.
  • Nature Chemistry, Vol. 1, Issue 4
  • DOI: 10.1038/nchem.257

Phase-separation kinetics of mixtures of linear and star-shaped polymers
journal, October 1990

  • Factor, Bradford J.; Russell, Thomas P.; Smith, Barton A.
  • Macromolecules, Vol. 23, Issue 20
  • DOI: 10.1021/ma00222a018

Diffusional behaviour of entangled star polymers
journal, August 1983

  • Klein, Jacob; Fletcher, Dianne; Fetters, Lewis J.
  • Nature, Vol. 304, Issue 5926
  • DOI: 10.1038/304526a0

Morphological evolution of thin PS/PMMA films: Effects of surface energy and blend composition
journal, August 2012


The miscibility window of poly(methylmethacrylate)/poly(styrene-co-acrylonitrile) blends
journal, May 1987


DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles
journal, October 2010

  • Cigler, Petr; Lytton-Jean, Abigail K. R.; Anderson, Daniel G.
  • Nature Materials, Vol. 9, Issue 11, p. 918-922
  • DOI: 10.1038/nmat2877

A binary interaction model for miscibility of copolymers in blends
journal, April 1984


Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate)
journal, May 1990

  • Russell, Thomas P.; Hjelm, Rex P.; Seeger, Phil A.
  • Macromolecules, Vol. 23, Issue 3
  • DOI: 10.1021/ma00205a033

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Enthalpic Stabilization of Brush-Coated Particles in a Polymer Melt
journal, June 2002

  • Borukhov, Itamar; Leibler, Ludwik
  • Macromolecules, Vol. 35, Issue 13
  • DOI: 10.1021/ma011351g

Dynamics of fluctuations and spinodal decomposition in polymer blends
journal, May 1980

  • de Gennes, P. G.
  • The Journal of Chemical Physics, Vol. 72, Issue 9
  • DOI: 10.1063/1.439809

Nanocomposites with Polymer Grafted Nanoparticles
journal, April 2013

  • Kumar, Sanat K.; Jouault, Nicolas; Benicewicz, Brian
  • Macromolecules, Vol. 46, Issue 9
  • DOI: 10.1021/ma4001385

A nonlinear theory of transients following step temperature changes in polymer blends
journal, November 1993


Spinodal decomposition in multicomponent polymer blends
journal, August 1995

  • Lin, C. C.; Jeon, H. S.; Balsara, N. P.
  • The Journal of Chemical Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.469720

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Flexible Particle Array Structures by Controlling Polymer Graft Architecture
journal, September 2010

  • Choi, Jihoon; Dong, Hongchen; Matyjaszewski, Krzysztof
  • Journal of the American Chemical Society, Vol. 132, Issue 36
  • DOI: 10.1021/ja105189s

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Breakdown of Dynamic Scaling in Thin Film Binary Liquids Undergoing Phase Separation
journal, May 2004


Dynamics of fluctuations and spinodal decomposition in polymer blends. II
journal, August 1981

  • Pincus, P.
  • The Journal of Chemical Physics, Vol. 75, Issue 4
  • DOI: 10.1063/1.442226

Impact of Polymer Graft Characteristics and Evaporation Rate on the Formation of 2-D Nanoparticle Assemblies
journal, August 2010

  • Ojha, Satyajeet; Beppler, Benjamin; Dong, Hongchen
  • Langmuir, Vol. 26, Issue 16
  • DOI: 10.1021/la1019372

Formation and dissolution of phase-separated structures in ultrathin blend films
journal, January 1998


The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities
journal, April 1975