Deconvolution of Composition and Crystallite Size of Silver Hollandite Nanorods: Influence on Electrochemistry
- Stony Brook Univ., NY (United States). Dept. of Chemistry
- Brookhaven National Lab. (BNL), Upton, NY (United States). Energy Sciences Directorate
- Stony Brook Univ., NY (United States). Dept. of Chemistry. Dept. of Materials Science and Chemical Engineering; Brookhaven National Lab. (BNL), Upton, NY (United States). Energy Sciences Directorate
- Stony Brook Univ., NY (United States). Dept. of Chemistry. Dept. of Materials Science and Chemical Engineering
In this paper, silver hollandite (Ag1.4Mn8O16) has been synthesized by an aqueous, low-temperature co-precipitation technique to afford silver hollandite with distinct crystallite sizes (10 and 15 nm, identified as S-Ag1.4Mn8O16 and L-Ag1.4Mn8O16, respectively) and equivalent silver content (x), allowing for the deconvolution of electrochemical effects related to crystallite size and silver content. The as-prepared silver hollandite materials were confirmed to be structurally analogous. Notably, TEM imaging reveals a high degree of bundling of S-Ag1.4Mn8O16 nanorods compared to L-Ag1.4Mn8O16 which facilitates more intimate connection of the S-Ag1.4Mn8O16 material with enhanced interparticle contact. The electrochemical behavior and lithium diffusion properties were investigated by galvanostatic cycling, CV, electrochemical impedance, pulsed-discharge experiments, and ex-situ XAS analysis of cycled cathodes. Lithium based electrochemical cells containing S-Ag1.4Mn8O16 delivered a capacity 15X higher than L-Ag1.4Mn8O16 on cycle 1. Ex-situ XAS demonstrated structural change for S-Ag1.4Mn8O16 and formation of Ag0 on insertion of 3.8 Li+ intercalation. However, the samples of L-Ag1.4Mn8O16 were lithiated by a more limited 0.25 molar equivalents, where no significant structural changes were observed. Finally, the findings affirm crystallite size significantly impacts electrochemistry independent of cation occupancy of the α-MnO2 type structure.
- Research Organization:
- Brookhaven National Laboratory (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- SC0012704; SC0012673; AC02-06CH11357
- OSTI ID:
- 1425104
- Report Number(s):
- BNL-203324-2018-JAAM
- Journal Information:
- Journal of the Electrochemical Society, Vol. 164, Issue 14; ISSN 0013-4651
- Publisher:
- The Electrochemical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Review of the Stability/Capacity Trade-off in Silver Hollandite Lithium Battery Cathodes
|
journal | January 2018 |
Similar Records
Structural Defects of Silver Hollandite, AgxMn8Oy, Nanorods: Dramatic Impact on Electrochemistry
Vanadium-Substituted Tunnel Structured Silver Hollandite (Ag1.2VxMn8–xO16): Impact on Morphology and Electrochemistry