skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

Abstract

Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transportmore » of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [5]; ORCiD logo [5];  [4]; ORCiD logo [6]; ORCiD logo [2];  [7];  [8];  [9];  [8];  [4]; ORCiD logo [4]; ORCiD logo [10]; ORCiD logo [2]; ORCiD logo [11]; ORCiD logo [12];  [13] more »; ORCiD logo [14];  [4];  [4]; ORCiD logo [4];  [15]; ORCiD logo [8];  [8];  [9]; ORCiD logo [4]; ORCiD logo [4];  [16];  [12]; ORCiD logo [17];  [18]; ORCiD logo [19]; ORCiD logo [16]; ORCiD logo [11]; ORCiD logo [8] « less
  1. Max Planck Inst. for Chemistry, Mainz (Germany). Biogeochemistry, Multiphase Chemistry, and Particle Chemistry Dept.; Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography
  2. Forschungszentrum Julich (Germany)
  3. Univ. of Sao Paulo (Brazil). Inst. of Astronomy, Geophysics and Atmospheric Sciences
  4. Max Planck Inst. for Chemistry, Mainz (Germany). Biogeochemistry, Multiphase Chemistry, and Particle Chemistry Dept.
  5. Univ. of Sao Paulo (Brazil). Inst. of Physics
  6. National Inst. for Space Research (INPE), Sao Jose dos Campos (Brazil); Univ. of Sao Paulo (Brazil). Inst. of Astronomy, Geophysics and Atmospheric Sciences
  7. Ludwig Maximilian Univ., Munich (Germany). Meteorological Inst.; Univ. of Vienna (Austria). Aerosol Physics and Environmental Physics
  8. German Aerospace Center (DLR), Wessling (Germany). Inst. of Atmospheric Physics (IPA)
  9. Karlsruhe Inst. of Technology (KIT) (Germany). Inst. for Meteorology and Climate Research
  10. Ludwig Maximilian Univ., Munich (Germany). Meteorological Inst.
  11. Leipzig Univ. (Germany). Leipzig Inst. for Meteorology
  12. National Inst. for Space Research (INPE), Sao Jose dos Campos (Brazil)
  13. Leibniz Inst. for Tropospheric Research, Leipzig (Germany)
  14. German Aerospace Center (DLR), Wessling (Germany). Inst. of Atmospheric Physics (IPA). Flight Experiments
  15. Hebrew Univ. of Jerusalem (Israel). Inst. of Earth Sciences
  16. German Aerospace Center (DLR), Wessling (Germany). Inst. of Atmospheric Physics (IPA); Univ. of Vienna (Austria). Aerosol Physics and Environmental Physics
  17. German Aerospace Center (DLR), Wessling (Germany). Inst. of Atmospheric Physics (IPA); Johannes Gutenberg Univ., Mainz (Germany). Inst. of Atmospheric Physics (IPA)
  18. Ludwig Maximilian Univ., Munich (Germany). Meteorological Inst.; German Aerospace Center (DLR), Wessling (Germany). Inst. of Atmospheric Physics (IPA)
  19. Max Planck Inst. for Chemistry, Mainz (Germany). Biogeochemistry, Multiphase Chemistry, and Particle Chemistry Dept.; Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE; German Science Foundation (DFG); German Federal Ministry of Education and Research (BMBF); Helmholtz Association (Germany); Sao Paulo Research Foundation (FAPESP) (Brazil); European Research Council (ERC)
OSTI Identifier:
1425079
Report Number(s):
BNL-203226-2018-JAAM
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
SC0012704; VO1504/4-1; SCHN1138/1-2; MI 583/4-1; JU 3059/1-1; WE 1900/22-1; WE 1900/24-1; WE 1900/36-1; 01LG1205E; W2/W3-60; VH-NG-606; 2014/08615-7; 2014/21189-7; 640458; 607905
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 18; Journal Issue: 2; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Andreae, Meinrat O., Afchine, Armin, Albrecht, Rachel, Holanda, Bruna Amorim, Artaxo, Paulo, Barbosa, Henrique M. J., Borrmann, Stephan, Cecchini, Micael A., Costa, Anja, Dollner, Maximilian, Fütterer, Daniel, Järvinen, Emma, Jurkat, Tina, Klimach, Thomas, Konemann, Tobias, Knote, Christoph, Krämer, Martina, Krisna, Trismono, Machado, Luiz A. T., Mertes, Stephan, Minikin, Andreas, Pöhlker, Christopher, Pöhlker, Mira L., Pöschl, Ulrich, Rosenfeld, Daniel, Sauer, Daniel, Schlager, Hans, Schnaiter, Martin, Schneider, Johannes, Schulz, Christiane, Spanu, Antonio, Sperling, Vinicius B., Voigt, Christiane, Walser, Adrian, Wang, Jian, Weinzierl, Bernadett, Wendisch, Manfred, and Ziereis, Helmut. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. United States: N. p., 2018. Web. doi:10.5194/acp-18-921-2018.
Andreae, Meinrat O., Afchine, Armin, Albrecht, Rachel, Holanda, Bruna Amorim, Artaxo, Paulo, Barbosa, Henrique M. J., Borrmann, Stephan, Cecchini, Micael A., Costa, Anja, Dollner, Maximilian, Fütterer, Daniel, Järvinen, Emma, Jurkat, Tina, Klimach, Thomas, Konemann, Tobias, Knote, Christoph, Krämer, Martina, Krisna, Trismono, Machado, Luiz A. T., Mertes, Stephan, Minikin, Andreas, Pöhlker, Christopher, Pöhlker, Mira L., Pöschl, Ulrich, Rosenfeld, Daniel, Sauer, Daniel, Schlager, Hans, Schnaiter, Martin, Schneider, Johannes, Schulz, Christiane, Spanu, Antonio, Sperling, Vinicius B., Voigt, Christiane, Walser, Adrian, Wang, Jian, Weinzierl, Bernadett, Wendisch, Manfred, & Ziereis, Helmut. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. United States. doi:10.5194/acp-18-921-2018.
Andreae, Meinrat O., Afchine, Armin, Albrecht, Rachel, Holanda, Bruna Amorim, Artaxo, Paulo, Barbosa, Henrique M. J., Borrmann, Stephan, Cecchini, Micael A., Costa, Anja, Dollner, Maximilian, Fütterer, Daniel, Järvinen, Emma, Jurkat, Tina, Klimach, Thomas, Konemann, Tobias, Knote, Christoph, Krämer, Martina, Krisna, Trismono, Machado, Luiz A. T., Mertes, Stephan, Minikin, Andreas, Pöhlker, Christopher, Pöhlker, Mira L., Pöschl, Ulrich, Rosenfeld, Daniel, Sauer, Daniel, Schlager, Hans, Schnaiter, Martin, Schneider, Johannes, Schulz, Christiane, Spanu, Antonio, Sperling, Vinicius B., Voigt, Christiane, Walser, Adrian, Wang, Jian, Weinzierl, Bernadett, Wendisch, Manfred, and Ziereis, Helmut. Thu . "Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin". United States. doi:10.5194/acp-18-921-2018. https://www.osti.gov/servlets/purl/1425079.
@article{osti_1425079,
title = {Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin},
author = {Andreae, Meinrat O. and Afchine, Armin and Albrecht, Rachel and Holanda, Bruna Amorim and Artaxo, Paulo and Barbosa, Henrique M. J. and Borrmann, Stephan and Cecchini, Micael A. and Costa, Anja and Dollner, Maximilian and Fütterer, Daniel and Järvinen, Emma and Jurkat, Tina and Klimach, Thomas and Konemann, Tobias and Knote, Christoph and Krämer, Martina and Krisna, Trismono and Machado, Luiz A. T. and Mertes, Stephan and Minikin, Andreas and Pöhlker, Christopher and Pöhlker, Mira L. and Pöschl, Ulrich and Rosenfeld, Daniel and Sauer, Daniel and Schlager, Hans and Schnaiter, Martin and Schneider, Johannes and Schulz, Christiane and Spanu, Antonio and Sperling, Vinicius B. and Voigt, Christiane and Walser, Adrian and Wang, Jian and Weinzierl, Bernadett and Wendisch, Manfred and Ziereis, Helmut},
abstractNote = {Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.},
doi = {10.5194/acp-18-921-2018},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 2,
volume = 18,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

PHIPS–HALO: the airborne Particle Habit Imaging and Polar Scattering probe – Part 1: Design and operation
journal, January 2016

  • Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis
  • Atmospheric Measurement Techniques, Vol. 9, Issue 7
  • DOI: 10.5194/amt-9-3131-2016

Identification of the Mass Spectral Signature of Organic Aerosols from Wood Burning Emissions
journal, August 2007

  • Alfarra, M. Rami; Prevot, Andre S. H.; Szidat, Sönke
  • Environmental Science & Technology, Vol. 41, Issue 16
  • DOI: 10.1021/es062289b

Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions
journal, January 2009


The cycle of biogenic sulfur compounds over the Amazon Basin: 1. Dry season
journal, January 1988


Biomass-burning emissions and associated haze layers over Amazonia
journal, January 1988

  • Andreae, M. O.; Browell, E. V.; Garstang, M.
  • Journal of Geophysical Research, Vol. 93, Issue D2
  • DOI: 10.1029/JD093iD02p01509

The atmospheric sulfur cycle over the Amazon Basin: 2. Wet season
journal, January 1990

  • Andreae, M. O.; Berresheim, H.; Bingemer, H.
  • Journal of Geophysical Research, Vol. 95, Issue D10
  • DOI: 10.1029/JD095iD10p16813

Precipitation chemistry in central Amazonia
journal, January 1990

  • Andreae, M. O.; Talbot, R. W.; Berresheim, H.
  • Journal of Geophysical Research, Vol. 95, Issue D10
  • DOI: 10.1029/JD095iD10p16987

Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3
journal, January 1994

  • Andreae, M. O.; Anderson, B. E.; Blake, D. R.
  • Journal of Geophysical Research, Vol. 99, Issue D6
  • DOI: 10.1029/94JD00263

Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region
journal, March 2001

  • Andreae, M. O.; Artaxo, P.; Fischer, H.
  • Geophysical Research Letters, Vol. 28, Issue 6
  • DOI: 10.1029/2000GL012391

Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments
journal, January 2002


Smoking Rain Clouds over the Amazon
journal, February 2004


Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons
journal, January 2012

  • Andreae, M. O.; Artaxo, P.; Beck, V.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 13
  • DOI: 10.5194/acp-12-6041-2012

The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols
journal, January 2015

  • Andreae, M. O.; Acevedo, O. C.; Araùjo, A.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 18
  • DOI: 10.5194/acp-15-10723-2015

Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere
journal, January 2012

  • Apel, E. C.; Olson, J. R.; Crawford, J. H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-1135-2012

Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia
journal, January 2002


Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions
journal, January 2013

  • Artaxo, Paulo; Rizzo, Luciana V.; Brito, Joel F.
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00052d

The effects of airmass history on new particle formation in the free troposphere: case studies
journal, January 2008

  • Benson, D. R.; Campos, T. L.; Rogers, D. C.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 12
  • DOI: 10.5194/acp-8-3015-2008

Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis
journal, June 2016

  • Berkemeier, Thomas; Ammann, Markus; Mentel, Thomas F.
  • Environmental Science & Technology, Vol. 50, Issue 12
  • DOI: 10.1021/acs.est.6b00961

Hydroxyl radical-induced formation of highly oxidized organic compounds
journal, December 2016

  • Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13677

Direct Measurements of the Convective Recycling of the Upper Troposphere
journal, February 2007


Transport of ozone to the surface by convective downdrafts at night
journal, January 2002


New particle formation in the free troposphere: A question of chemistry and timing
journal, May 2016


Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility
journal, January 2010

  • Borrmann, S.; Kunkel, D.; Weigel, R.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 12
  • DOI: 10.5194/acp-10-5573-2010

Particle Formation in the Upper Tropical Troposphere: A Source of Nuclei for the Stratospheric Aerosol
journal, December 1995


Ozone and aerosol distributions and air mass characteristics over the South Atlantic Basin during the burning season
journal, October 1996

  • Browell, E. V.; Fenn, M. A.; Butler, C. F.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D19
  • DOI: 10.1029/95JD02536

Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates
journal, February 2010

  • Bruns, Emily A.; Perraud, Véronique; Zelenyuk, Alla
  • Environmental Science & Technology, Vol. 44, Issue 3
  • DOI: 10.1021/es9029864

Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800nm: Laboratory and field studies
journal, September 2008


Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

Aerosols in the Pre-industrial Atmosphere
journal, March 2017

  • Carslaw, Kenneth S.; Gordon, Hamish; Hamilton, Douglas S.
  • Current Climate Change Reports, Vol. 3, Issue 1
  • DOI: 10.1007/s40641-017-0061-2

Sensitivities of Amazonian clouds to aerosols and updraft speed
journal, January 2017

  • Cecchini, Micael A.; Machado, Luiz A. T.; Andreae, Meinrat O.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 16
  • DOI: 10.5194/acp-17-10037-2017

Observations of high droplet number concentrations in Southern Ocean boundary layer clouds
journal, January 2016

  • Chubb, T.; Huang, Y.; Jensen, J.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-971-2016

Hemispheric Aerosol Vertical Profiles: Anthropogenic Impacts on Optical Depth and Cloud Nuclei
journal, September 2010


Atmospheric nuclei in the remote free-troposphere
journal, April 1992

  • Clarke, Antomy D.
  • Journal of Atmospheric Chemistry, Vol. 14, Issue 1-4
  • DOI: 10.1007/BF00115252

Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution
journal, January 1993

  • Clarke, Antony D.
  • Journal of Geophysical Research, Vol. 98, Issue D11
  • DOI: 10.1029/93JD00797

A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere*
journal, February 2002


Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1
journal, July 1998

  • Clarke, A. D.; Varner, J. L.; Eisele, F.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D13
  • DOI: 10.1029/97JD02987

Nucleation in the equatorial free troposphere: Favorable environments during PEM-Tropics
journal, March 1999

  • Clarke, A. D.; Eisele, F.; Kapustin, V. N.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D5
  • DOI: 10.1029/98JD02303

Free troposphere as a major source of CCN for the equatorial pacific boundary layer: long-range transport and teleconnections
journal, January 2013

  • Clarke, A. D.; Freitag, S.; Simpson, R. M. C.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 15
  • DOI: 10.5194/acp-13-7511-2013

Cloudiness over the Amazon rainforest: Meteorology and thermodynamics
journal, July 2016

  • Collow, Allison B. Marquardt; Miller, Mark A.; Trabachino, Lynne C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 13, p. 7990-8005
  • DOI: 10.1002/2016JD024848

Airborne Measurements of Trace Organic Species in the Upper Troposphere Over Europe: the Impact of Deep Convection
journal, January 2006

  • Colomb, Aurélie; Williams, Jonathan; Crowley, John
  • Environmental Chemistry, Vol. 3, Issue 4
  • DOI: 10.1071/EN06020

Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
journal, January 2011

  • Cubison, M. J.; Ortega, A. M.; Hayes, P. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12049-2011

Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
journal, December 2016

  • Dagan, Guy; Koren, Ilan; Altaratz, Orit
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38769

Vertical and horizontal distributions of the aerosol number concentration and size distribution over the northern Indian Ocean
journal, November 2001

  • de Reus, Marian; Krejci, Radovan; Williams, Jonathan
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D22
  • DOI: 10.1029/2001JD900017

A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment
journal, July 2005

  • Drewnick, Frank; Hings, Silke S.; DeCarlo, Peter
  • Aerosol Science and Technology, Vol. 39, Issue 7
  • DOI: 10.1080/02786820500182040

Global atmospheric particle formation from CERN CLOUD measurements
journal, October 2016


A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere
journal, February 2006

  • Ekman, Annica M. L.; Wang, Chien; Ström, Johan
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 2
  • DOI: 10.1175/JAS3645.1

Do organics contribute to small particle formation in the Amazonian upper troposphere?
journal, January 2008

  • Ekman, Annica M. L.; Krejci, Radovan; Engström, Anders
  • Geophysical Research Letters, Vol. 35, Issue 17
  • DOI: 10.1029/2008GL034970

Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model: SUB-MICROMETER PARTICLES IN THE UT/LMS
journal, June 2012

  • Ekman, Annica M. L.; Hermann, Markus; Groß, Peter
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D11
  • DOI: 10.1029/2011JD016777

CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol
journal, January 2008

  • Engelhart, G. J.; Asa-Awuku, A.; Nenes, A.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-3937-2008

Cloud condensation nuclei activity of isoprene secondary organic aerosol
journal, January 2011

  • Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios
  • Journal of Geophysical Research, Vol. 116, Issue D2
  • DOI: 10.1029/2010JD014706

Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols
journal, January 2008

  • Engström, Anders; Ekman, Annica M. L.; Krejci, Radovan
  • Geophysical Research Letters, Vol. 35, Issue 23
  • DOI: 10.1029/2008GL035817

Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection: AEROSOL-DEEP CONVECTION INTERACTIONS
journal, May 2012

  • Fan, Jiwen; Rosenfeld, Daniel; Ding, Yanni
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051851

Identification of Widespread Pollution in the Southern Hemisphere Deduced from Satellite Analyses
journal, June 1991


Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A
journal, October 1996

  • Fishman, Jack; Brackett, Vincent G.; Browell, Edward V.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D19
  • DOI: 10.1029/95JD03576

Aerosol composition of the tropical upper troposphere
journal, January 2009

  • Froyd, K. D.; Murphy, D. M.; Sanford, T. J.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 13
  • DOI: 10.5194/acp-9-4363-2009

Organic nitrate and secondary organic aerosol yield from NO 3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model
journal, January 2009

  • Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1431-2009

How Do Atmosphere and Land Surface Influence Seasonal Changes of Convection in the Tropical Amazon?
journal, May 1999


Tropical tropopause layer
journal, January 2009

  • Fueglistaler, S.; Dessler, A. E.; Dunkerton, T. J.
  • Reviews of Geophysics, Vol. 47, Issue 1
  • DOI: 10.1029/2008RG000267

An improved fast-response vacuum-UV resonance fluorescence CO instrument
journal, January 1999

  • Gerbig, Christoph; Schmitgen, Sandra; Kley, Dieter
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D1
  • DOI: 10.1029/1998JD100031

Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest
journal, January 2016


Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment
journal, January 2017

  • Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 23
  • DOI: 10.5194/acp-17-14519-2017

Influence of biomass aerosol on precipitation over the Central Amazon: an observational study
journal, January 2015

  • Gonçalves, W. A.; Machado, L. A. T.; Kirstetter, P. -E.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 12
  • DOI: 10.5194/acp-15-6789-2015

Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
journal, October 2016

  • Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1602360113

Ozone transport by mesoscale convective storms in western Senegal
journal, September 2008


A large organic aerosol source in the free troposphere missing from current models: LARGE TROPOSPHERIC SOURCE OF OC AEROSOLS
journal, September 2005

  • Heald, Colette L.; Jacob, Daniel J.; Park, Rokjin J.
  • Geophysical Research Letters, Vol. 32, Issue 18
  • DOI: 10.1029/2005GL023831

Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009
journal, January 2011

  • Heintzenberg, J.; Birmili, W.; Otto, R.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8703-2011

Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
journal, January 2015

  • Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 20
  • DOI: 10.5194/acp-15-11807-2015

Downward transport and modification of tropospheric ozone through moist convection
journal, January 2010

  • Hu, Xiao-Ming; Fuentes, Jose D.; Zhang, Fuqing
  • Journal of Atmospheric Chemistry, Vol. 65, Issue 1
  • DOI: 10.1007/s10874-010-9179-5

On the origin of pronounced O 3 gradients in the thunderstorm outflow region during DC3 : PRONOUNCED O
journal, June 2016

  • Huntrieser, H.; Lichtenstern, M.; Scheibe, M.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 11
  • DOI: 10.1002/2015JD024279

Biomass burning aerosol emissions from vegetation fires: particle number and mass emission factors and size distributions
journal, January 2010

  • Janhäll, S.; Andreae, M. O.; Pöschl, U.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 3
  • DOI: 10.5194/acp-10-1427-2010

Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America
journal, January 2008

  • Jiang, Jonathan H.; Su, Hui; Schoeberl, Mark R.
  • Geophysical Research Letters, Vol. 35, Issue 14
  • DOI: 10.1029/2008GL034631

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
journal, May 2015

  • Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 23
  • DOI: 10.1073/pnas.1423977112

A Study of Processes that Govern the Maintenance of Aerosols in the Marine Boundary Layer
journal, April 1999


The Role of Small Soluble Aerosols in the Microphysics of Deep Maritime Clouds
journal, September 2012

  • Khain, A. P.; Phillips, V.; Benmoshe, N.
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 9
  • DOI: 10.1175/2011JAS3649.1

Ion-induced nucleation of pure biogenic particles
journal, May 2016

  • Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17953

Aerosol particles from tropical convective systems: Cloud tops and cirrus anvils
journal, January 2004


Smoke Invigoration Versus Inhibition of Clouds over the Amazon
journal, August 2008


Aerosol-induced changes of convective cloud anvils produce strong climate warming
journal, January 2010

  • Koren, I.; Remer, L. A.; Altaratz, O.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-5001-2010

Enhancement in the upper tropospheric humidity associated with aerosol loading over tropical Pacific
journal, December 2015


Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements
journal, January 2014

  • Krüger, M. L.; Mertes, S.; Klimach, T.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 8
  • DOI: 10.5194/amt-7-2615-2014

On the formation and growth of atmospheric nanoparticles
journal, November 2008


Deep convective clouds as aerosol production engines: Role of insoluble organics
journal, January 2006

  • Kulmala, Markku; Reissell, Anni; Sipilä, Mikko
  • Journal of Geophysical Research, Vol. 111, Issue D17
  • DOI: 10.1029/2005JD006963

The role of VOC oxidation products in continental new particle formation
journal, January 2008

  • Laaksonen, A.; Kulmala, M.; O&apos;Dowd, C. D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 10
  • DOI: 10.5194/acp-8-2657-2008

Black carbon physical properties and mixing state in the European megacity Paris
journal, January 2013

  • Laborde, M.; Crippa, M.; Tritscher, T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 11
  • DOI: 10.5194/acp-13-5831-2013

Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study
journal, January 2014

  • Lee, L.; Wooldridge, P. J.; Gilman, J. B.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 22
  • DOI: 10.5194/acp-14-12441-2014

Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere
journal, September 2003


New particle formation observed in the tropical/subtropical cirrus clouds
journal, January 2004


Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing
journal, April 2004

  • Machado, L. A. T.; Laurent, H.; Dessay, N.
  • Theoretical and Applied Climatology, Vol. 78, Issue 1-3
  • DOI: 10.1007/s00704-004-0044-9

Sources and properties of Amazonian aerosol particles
journal, January 2010

  • Martin, Scot T.; Andreae, Meinrat O.; Artaxo, Paulo
  • Reviews of Geophysics, Vol. 48, Issue 2
  • DOI: 10.1029/2008RG000280

Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)
journal, January 2016

  • Martin, S. T.; Artaxo, P.; Machado, L. A. T.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
  • DOI: 10.5194/acp-16-4785-2016

Impact of nucleation on global CCN
journal, January 2009

  • Merikanto, J.; Spracklen, D. V.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 21
  • DOI: 10.5194/acp-9-8601-2009

Evidence for the role of organics in aerosol particle formation under atmospheric conditions
journal, January 2010

  • Metzger, A.; Verheggen, B.; Dommen, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911330107

Atmospheric sub-3 nm particles at high altitudes
journal, January 2010

  • Mirme, S.; Mirme, A.; Minikin, A.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-437-2010

Organic aerosol processing in tropical deep convective clouds: Development of a new model (CRM‐ORG) and implications for sources of particle number
journal, October 2015

  • Murphy, B. N.; Julin, J.; Riipinen, I.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 19
  • DOI: 10.1002/2015JD023551

Ubiquity of quasi-horizontal layers in the troposphere
journal, March 1999

  • Newell, Reginald E.; Thouret, Valerie; Cho, John Y. N.
  • Nature, Vol. 398, Issue 6725
  • DOI: 10.1038/18642

Changes in organic aerosol composition with aging inferred from aerosol mass spectra
journal, January 2011

  • Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6465-2011

Modeling the role of highly oxidized multifunctional organic molecules for the growth of new particles over the boreal forest region
journal, January 2017

  • Öström, Emilie; Putian, Zhou; Schurgers, Guy
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 14
  • DOI: 10.5194/acp-17-8887-2017

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
journal, January 2007

  • Petters, M. D.; Kreidenweis, S. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1961-2007

Evaluation of Methods for Measuring Particulate Matter Emissions from Gas Turbines
journal, April 2011

  • Petzold, Andreas; Marsh, Richard; Johnson, Mark
  • Environmental Science & Technology, Vol. 45, Issue 8
  • DOI: 10.1021/es103969v

Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
journal, August 2012


Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction
journal, January 2016

  • Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 24
  • DOI: 10.5194/acp-16-15709-2016

Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
journal, September 2010


Physical processes in the tropical tropopause layer and their roles in a changing climate
journal, February 2013

  • Randel, William J.; Jensen, Eric J.
  • Nature Geoscience, Vol. 6, Issue 3
  • DOI: 10.1038/ngeo1733

The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty
journal, September 2017

  • Reddington, C. L.; Carslaw, K. S.; Stier, P.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 9
  • DOI: 10.1175/BAMS-D-15-00317.1

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
journal, May 2014


Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
journal, January 2011

  • Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3865-2011

The contribution of organics to atmospheric nanoparticle growth
journal, June 2012

  • Riipinen, Ilona; Yli-Juuti, Taina; Pierce, Jeffrey R.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1499

Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia
journal, January 2006

  • Rissler, J.; Vestin, A.; Swietlicki, E.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 2
  • DOI: 10.5194/acp-6-471-2006

Observational evidence for aerosols increasing upper tropospheric humidity
journal, January 2016

  • Riuttanen, Laura; Bister, Marja; Kerminen, Veli-Matti
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 22
  • DOI: 10.5194/acp-16-14331-2016

Long term measurements of aerosol optical properties at a primary forest site in Amazonia
journal, January 2013

  • Rizzo, L. V.; Artaxo, P.; Müller, T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2391-2013

A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements
journal, March 2005


Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent?
journal, July 2001

  • Roberts, Gregory C.; Andreae, Meinrat O.; Zhou, Jingchuan
  • Geophysical Research Letters, Vol. 28, Issue 14
  • DOI: 10.1029/2000GL012585

Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest
journal, January 2011

  • Robinson, N. H.; Hamilton, J. F.; Allan, J. D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 3
  • DOI: 10.5194/acp-11-1039-2011

CCN production by new particle formation in the free troposphere
journal, January 2017

  • Rose, Clémence; Sellegri, Karine; Moreno, Isabel
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 2
  • DOI: 10.5194/acp-17-1529-2017

Flood or Drought: How Do Aerosols Affect Precipitation?
journal, September 2008


Global observations of aerosol-cloud-precipitation-climate interactions: Aerosol-cloud-climate interactions
journal, November 2014

  • Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari
  • Reviews of Geophysics, Vol. 52, Issue 4
  • DOI: 10.1002/2013RG000441

Changes in surface ozone levels due to convective downdrafts over the Bay of Bengal: DOWNDRAFTS OF O
journal, May 2006


Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles
journal, December 2006

  • Schneider, J.; Weimer, S.; Drewnick, F.
  • International Journal of Mass Spectrometry, Vol. 258, Issue 1-3
  • DOI: 10.1016/j.ijms.2006.07.008

Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere
journal, January 2006

  • Schwarz, J. P.; Gao, R. S.; Fahey, D. W.
  • Journal of Geophysical Research, Vol. 111, Issue D16
  • DOI: 10.1029/2006JD007076

Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability: UPPER TROPOSPHERIC BC
journal, January 2017

  • Schwarz, Joshua P.; Weinzierl, Bernadett; Samset, Bjørn H.
  • Geophysical Research Letters, Vol. 44, Issue 2
  • DOI: 10.1002/2016GL071241

Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode
journal, January 2004


The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales
journal, January 2006

  • Spracklen, D. V.; Carslaw, K. S.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5631-2006

NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System
journal, December 2015

  • Stein, A. F.; Draxler, R. R.; Rolph, G. D.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 12
  • DOI: 10.1175/BAMS-D-14-00110.1

Particle identification by laser-induced incandescence in a solid-state laser cavity
journal, January 2003

  • Stephens, Michelle; Turner, Nelson; Sandberg, Jon
  • Applied Optics, Vol. 42, Issue 19
  • DOI: 10.1364/AO.42.003726

A Density Correction for Lagrangian Particle Dispersion Models
journal, January 1999


Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data
journal, December 1998


A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements
journal, October 2002


Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2
journal, January 2005

  • Stohl, A.; Forster, C.; Frank, A.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 9
  • DOI: 10.5194/acp-5-2461-2005

Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics: THERMODYNAMICS, AEROSOLS, AND CONVECTION
journal, June 2015

  • Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 12
  • DOI: 10.1002/2014JD023033

Regional aerosol chemistry of the Amazon Basin during the dry season
journal, January 1988

  • Talbot, R. W.; Andreae, M. O.; Andreae, T. W.
  • Journal of Geophysical Research, Vol. 93, Issue D2
  • DOI: 10.1029/JD093iD02p01499

Aerosol chemistry during the wet season in central Amazonia: The influence of long-range transport
journal, January 1990

  • Talbot, R. W.; Andreae, M. O.; Berresheim, H.
  • Journal of Geophysical Research, Vol. 95, Issue D10
  • DOI: 10.1029/JD095iD10p16955

Persistence of organic carbon in heated aerosol residuals measured during Tropical Composition Cloud and Climate Coupling (TC4)
journal, January 2010

  • Thornberry, T.; Froyd, K. D.; Murphy, D. M.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012721

The role of low-volatility organic compounds in initial particle growth in the atmosphere
journal, May 2016

  • Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature18271

Deep convection as a source of new particles in the midlatitude upper troposphere: DEEP CONVECTION AS A SOURCE OF NEW PARTICLES
journal, November 2002

  • Twohy, Cynthia H.; Clement, Charles F.; Gandrud, Bruce W.
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D21
  • DOI: 10.1029/2001JD000323

Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling
journal, January 2007

  • Vestin, A.; Rissler, J.; Swietlicki, E.
  • Journal of Geophysical Research, Vol. 112, Issue D14
  • DOI: 10.1029/2006JD008104

ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO
journal, February 2017

  • Voigt, Christiane; Schumann, Ulrich; Minikin, Andreas
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 2
  • DOI: 10.1175/BAMS-D-15-00213.1

Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems
journal, January 2009

  • von der Weiden, S. -L.; Drewnick, F.; Borrmann, S.
  • Atmospheric Measurement Techniques, Vol. 2, Issue 2
  • DOI: 10.5194/amt-2-479-2009

Aerosol observations and growth rates downwind of the anvil of a deep tropical thunderstorm
journal, January 2012

  • Waddicor, D. A.; Vaughan, G.; Choularton, T. W.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 14
  • DOI: 10.5194/acp-12-6157-2012

The Influence of Amazon Rainfall on the Atlantic ITCZ through Convectively Coupled Kelvin Waves
journal, April 2007


Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
journal, October 2016

  • Wang, Jian; Krejci, Radovan; Giangrande, Scott
  • Nature, Vol. 539, Issue 7629, p. 416-419
  • DOI: 10.1038/nature19819

Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season
journal, January 2016

  • Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 22
  • DOI: 10.5194/acp-16-14775-2016

The significance of biomass burning as a source of carbon monoxide and ozone in the southern hemisphere tropics: A satellite analysis
journal, January 1990

  • Watson, Catherine E.; Fishman, Jack; Reichle, Henry G.
  • Journal of Geophysical Research, Vol. 95, Issue D10
  • DOI: 10.1029/JD095iD10p16443

In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism
journal, January 2011

  • Weigel, R.; Borrmann, S.; Kazil, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 18
  • DOI: 10.5194/acp-11-9983-2011

Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft
journal, January 2016

  • Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph
  • Atmospheric Measurement Techniques, Vol. 9, Issue 10
  • DOI: 10.5194/amt-9-5135-2016

Influence of clouds on aerosol particle number concentrations in the upper troposphere: INFLUENCE OF CLOUDS ON AEROSOL IN THE UT
journal, January 2009

  • Weigelt, A.; Hermann, M.; van Velthoven, P. F. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 114, Issue D1
  • DOI: 10.1029/2008JD009805

The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights
journal, July 2017

  • Weinzierl, Bernadett; Ansmann, A.; Prospero, J. M.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 7
  • DOI: 10.1175/BAMS-D-15-00142.1

ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO
journal, October 2016

  • Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 10
  • DOI: 10.1175/BAMS-D-14-00255.1

An approximation of the bipolar charge distribution for particles in the submicron size range
journal, June 1988


Application of the variability-size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages
journal, January 2002

  • Williams, J.; de Reus, M.; Krejci, R.
  • Atmospheric Chemistry and Physics, Vol. 2, Issue 2
  • DOI: 10.5194/acp-2-133-2002

Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach
journal, August 2015

  • Yang, Qing; Easter, Richard C.; Campuzano‐Jost, Pedro
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 16
  • DOI: 10.1002/2015JD023647

Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development
journal, January 2005

  • Yin, Y.; Carslaw, K. S.; Feingold, G.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 605
  • DOI: 10.1256/qj.03.186

Enhanced new particle formation observed in the northern midlatitude tropopause region: MIDLATITUDE TROPOPAUSE NEW PARTICLE FORMATION
journal, May 2007

  • Young, Li-Hao; Benson, David R.; Montanaro, William M.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D10
  • DOI: 10.1029/2006JD008109

Ion-mediated nucleation as an important global source of tropospheric aerosols
journal, January 2008


Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere
journal, January 2017

  • Yu, Fangqun; Luo, Gan; Nadykto, Alexey B.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 8
  • DOI: 10.5194/acp-17-4997-2017

Radiative forcing from anthropogenic sulfur and organic emissions reaching the stratosphere: STRATOSPHERIC RADIATIVE FORCING
journal, September 2016

  • Yu, Pengfei; Murphy, Daniel M.; Portmann, Robert W.
  • Geophysical Research Letters, Vol. 43, Issue 17
  • DOI: 10.1002/2016GL070153

Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer
journal, December 2001

  • Zhou, Jingchuan; Swietlicki, Erik; Berg, Olle H.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2000JD900426

Does a Monsoon Climate Exist over South America?
journal, May 1998


Seasonal variation of shallow-to-deep convection transition and its link to the environmental conditions over the Central Amazon: Shallow-to-Deep Convection Transition
journal, March 2017

  • Zhuang, Yizhou; Fu, Rong; Marengo, José A.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 5
  • DOI: 10.1002/2016JD025993

Distributions of NO, NO x , and NO y in the upper troposphere and lower stratosphere between 28° and 61°N during POLINAT 2
journal, February 2000

  • Ziereis, H.; Schlager, H.; Schulte, P.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D3
  • DOI: 10.1029/1999JD900870

    Works referencing / citing this record:

    New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate
    journal, July 2019

    • Lee, Shan-Hu; Gordon, Hamish; Yu, Huan
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 13
    • DOI: 10.1029/2018jd029356

    New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate
    journal, July 2019

    • Lee, Shan-Hu; Gordon, Hamish; Yu, Huan
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 13
    • DOI: 10.1029/2018jd029356