DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111)

Abstract

Au(111) does not bind CO and O2 well. The deposition of small nanoparticles of MgO, CeO2, and TiO2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO2(111), and Au/TiO2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO2/Au(111) < TiO2/Au(111). Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO32–(ads), and OH(ads) were identified under reaction conditions. CO32–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green andmore » sustainable chemistry.« less

Authors:
 [1];  [2]; ORCiD logo [1];  [1];  [1]; ORCiD logo [3];  [1];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Univ. Central de Venezuela, Caracas (Venezuela)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1425036
Report Number(s):
BNL-200017-2018-JAAM
Journal ID: ISSN 2168-0485
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 5; Journal Issue: 11; Journal ID: ISSN 2168-0485
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY

Citation Formats

Palomino, Robert M., Gutiérrez, Ramón A., Liu, Zongyuan, Tenney, Samuel, Grinter, David C., Crumlin, Ethan, Waluyo, Iradwikanari, Ramírez, Pedro J., Rodriguez, José A., and Senanayake, Sanjaya D. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111). United States: N. p., 2017. Web. doi:10.1021/acssuschemeng.7b02744.
Palomino, Robert M., Gutiérrez, Ramón A., Liu, Zongyuan, Tenney, Samuel, Grinter, David C., Crumlin, Ethan, Waluyo, Iradwikanari, Ramírez, Pedro J., Rodriguez, José A., & Senanayake, Sanjaya D. Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111). United States. https://doi.org/10.1021/acssuschemeng.7b02744
Palomino, Robert M., Gutiérrez, Ramón A., Liu, Zongyuan, Tenney, Samuel, Grinter, David C., Crumlin, Ethan, Waluyo, Iradwikanari, Ramírez, Pedro J., Rodriguez, José A., and Senanayake, Sanjaya D. Tue . "Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111)". United States. https://doi.org/10.1021/acssuschemeng.7b02744. https://www.osti.gov/servlets/purl/1425036.
@article{osti_1425036,
title = {Inverse Catalysts for CO Oxidation: Enhanced Oxide–Metal Interactions in MgO/Au(111), CeO2/Au(111), and TiO2/Au(111)},
author = {Palomino, Robert M. and Gutiérrez, Ramón A. and Liu, Zongyuan and Tenney, Samuel and Grinter, David C. and Crumlin, Ethan and Waluyo, Iradwikanari and Ramírez, Pedro J. and Rodriguez, José A. and Senanayake, Sanjaya D.},
abstractNote = {Au(111) does not bind CO and O2 well. The deposition of small nanoparticles of MgO, CeO2, and TiO2 on Au(111) produces excellent catalysts for CO oxidation at room temperature. In an inverse oxide/metal configuration there is a strong enhancement of the oxide–metal interactions, and the inverse catalysts are more active than conventional Au/MgO(001), Au/CeO2(111), and Au/TiO2(110) catalysts. An identical trend was seen after comparing the CO oxidation activity of TiO2/Au and Au/TiO2 powder catalysts. In the model systems, the activity increased following the sequence: MgO/Au(111) < CeO2/Au(111) < TiO2/Au(111). Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) was used to elucidate the role of the titania–gold interface in inverse TiO2/Au(111) model catalysts during CO oxidation. Stable surface intermediates such as CO(ads), CO32–(ads), and OH(ads) were identified under reaction conditions. CO32–(ads) and OH(ads) behaved as spectators. The concentration of CO(ad) initially increased and then decreased with increasing TiO2 coverage, demonstrating a clear role of the Ti–Au interface and the size of the TiO2 nanostructures in the catalytic process. Overall, our results show an enhancement in the strength of the oxide–metal interactions when working with inverse oxide/metal configurations, a phenomenon that can be utilized for the design of efficient catalysts useful for green and sustainable chemistry.},
doi = {10.1021/acssuschemeng.7b02744},
journal = {ACS Sustainable Chemistry & Engineering},
number = 11,
volume = 5,
place = {United States},
year = {Tue Sep 26 00:00:00 EDT 2017},
month = {Tue Sep 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ionic Liquid-Assisted Sonochemical Preparation of CeO 2 Nanoparticles for CO Oxidation
journal, December 2014

  • Alammar, Tarek; Noei, Heshmat; Wang, Yuemin
  • ACS Sustainable Chemistry & Engineering, Vol. 3, Issue 1
  • DOI: 10.1021/sc500387k

Tailoring metal–oxide interfaces of inverse catalysts of TiO 2 /nanoporous-Au under hydrogen oxidation
journal, January 2015

  • Qadir, Kamran; Quynh, Bui Thi Phuong; Lee, Hyosun
  • Chemical Communications, Vol. 51, Issue 47
  • DOI: 10.1039/C5CC02832A

Nanostructured Oxides in Chemistry:  Characterization and Properties
journal, September 2004

  • Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.
  • Chemical Reviews, Vol. 104, Issue 9
  • DOI: 10.1021/cr030032f

Formation of a ZnO Overlayer in Industrial Cu/ZnO/Al 2 O 3 Catalysts Induced by Strong Metal-Support Interactions
journal, February 2015

  • Lunkenbein, Thomas; Schumann, Julia; Behrens, Malte
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201411581

Promoting Strong Metal Support Interaction: Doping ZnO for Enhanced Activity of Cu/ZnO:M (M = Al, Ga, Mg) Catalysts
journal, April 2015


In situ time-resolved characterization of novel Cu–MoO2 catalysts during the water–gas shift reaction
journal, January 2007


Reversibility of strong metal-support interactions on Rh/TiO2
journal, July 1989


Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles
journal, March 2011

  • Vayssilov, Georgi N.; Lykhach, Yaroslava; Migani, Annapaola
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2976

CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide–Metal Interactions
journal, July 2015


Inverse CeO 2 /CuO Catalyst As an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-Rich Stream
journal, January 2010

  • Hornés, A.; Hungría, A. B.; Bera, P.
  • Journal of the American Chemical Society, Vol. 132, Issue 1
  • DOI: 10.1021/ja9089846

CO Oxidation on a CeO x /Pt(111) Inverse Model Catalyst Surface: Catalytic Promotion and Tuning of Kinetic Phase Diagrams
journal, November 2008

  • Suchorski, Y.; Wrobel, R.; Becker, S.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 50
  • DOI: 10.1021/jp806033v

CO oxidation on inverse Fe2O3/Au(111) model catalysts
journal, October 2012


Adsorption and reaction of CO on a ceria–Rh(111) “inverse model catalyst” surface
journal, June 2003


A Surface Science Investigation of Methanol Synthesis over a Zn-Deposited Polycrystalline Cu Surface
journal, April 1996

  • Nakamura, J.; Nakamura, I.; Uchijima, T.
  • Journal of Catalysis, Vol. 160, Issue 1
  • DOI: 10.1006/jcat.1996.0124

Hydrogenation of CO 2 to Methanol on CeO x /Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce 3+ Sites
journal, January 2016

  • Senanayake, Sanjaya D.; Ramírez, Pedro J.; Waluyo, Iradwikanari
  • The Journal of Physical Chemistry C, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpcc.5b12012

Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2
journal, July 2014


Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
journal, March 2017


Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction
journal, December 2007


Importance of the Metal-Oxide Interface in Catalysis: In Situ Studies of the Water-Gas Shift Reaction by Ambient-Pressure X-ray Photoelectron Spectroscopy
journal, April 2013

  • Mudiyanselage, Kumudu; Senanayake, Sanjaya D.; Feria, Leticia
  • Angewandte Chemie International Edition, Vol. 52, Issue 19
  • DOI: 10.1002/anie.201210077

Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst
journal, August 2011


Insights into Catalytic Oxidation at the Au/TiO 2 Dual Perimeter Sites
journal, December 2013

  • Green, Isabel X.; Tang, Wenjie; Neurock, Matthew
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar400196f

Two-dimensional TiO x nanostructures on Au(111): a scanning tunneling microscopy and spectroscopy investigation
journal, November 2015


Surface Structures of Ultrathin TiO x Films on Au(111)
journal, April 2011

  • Wu, Chen; Marshall, Matthew S. J.; Castell, Martin R.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 17
  • DOI: 10.1021/jp111385n

Formation of TiO 2 Nanoparticles by Reactive-Layer-Assisted Deposition and Characterization by XPS and STM
journal, July 2005

  • Song, Zhen; Hrbek, Jan; Osgood, Richard
  • Nano Letters, Vol. 5, Issue 7
  • DOI: 10.1021/nl0505703

Mechanism and Active Sites of the Oxidation of CO over Au/TiO2
journal, September 2011

  • Fujitani, Tadahiro; Nakamura, Isao
  • Angewandte Chemie International Edition, Vol. 50, Issue 43
  • DOI: 10.1002/anie.201104694

Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)
journal, March 2017

  • Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 14
  • DOI: 10.1021/acs.jpcc.6b11764

Preparation of TiO 2 Nanocrystallites by Oxidation of Ti−Au(111) Surface Alloy
journal, June 2009

  • Potapenko, Denis V.; Osgood, Richard M.
  • Nano Letters, Vol. 9, Issue 6
  • DOI: 10.1021/nl900904s

Synthesis of TiO2 nanoparticles on the Au(111) surface
journal, September 2005

  • Biener, Jürgen; Farfan-Arribas, Enrique; Biener, Monika
  • The Journal of Chemical Physics, Vol. 123, Issue 9
  • DOI: 10.1063/1.1999607

Reaction of water with Ce–Au(111) and CeOx/Au(111) surfaces: Photoemission and STM studies
journal, June 2007


Growth of Ceria Nano-Islands on a Stepped Au(788) Surface
journal, August 2015

  • Ma, Teng; Surnev, Svetlozar; Netzer, Falko
  • Materials, Vol. 8, Issue 8
  • DOI: 10.3390/ma8085205

Competition between Polar and Nonpolar Growth of MgO Thin Films on Au(111)
journal, October 2011

  • Benedetti, S.; Nilius, N.; Torelli, P.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 46
  • DOI: 10.1021/jp207901a

Compensating Edge Polarity: A Means To Alter the Growth Orientation of MgO Nanostructures on Au(111)
journal, May 2012

  • Pan, Yi; Benedetti, Stefania; Noguera, Claudine
  • The Journal of Physical Chemistry C, Vol. 116, Issue 20
  • DOI: 10.1021/jp302302v

New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2
journal, May 2010

  • Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda
  • Review of Scientific Instruments, Vol. 81, Issue 5
  • DOI: 10.1063/1.3427218

Adsorption and surface-enhanced Raman of dyes on silver and gold sols
journal, August 1982

  • Lee, P. C.; Meisel, D.
  • The Journal of Physical Chemistry, Vol. 86, Issue 17, p. 3391-3395
  • DOI: 10.1021/j100214a025

Effect of Ceria on Gold–Titania Catalysts for the Water–Gas Shift Reaction: Fundamental Studies for Au/CeO x /TiO 2 (110) and Au/CeO x /TiO 2 Powders
journal, October 2012

  • Si, Rui; Tao, Jing; Evans, Jaime
  • The Journal of Physical Chemistry C, Vol. 116, Issue 44
  • DOI: 10.1021/jp3089325

Adsorption and Dissociation of O 2 on Gold Surfaces:  Effect of Steps and Strain
journal, September 2003

  • Xu, Ye; Mavrikakis, Manos
  • The Journal of Physical Chemistry B, Vol. 107, Issue 35
  • DOI: 10.1021/jp034380x

CO oxidation over Au/TiO2 catalyst: Pretreatment effects, catalyst deactivation, and carbonates production
journal, November 2013


High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level
journal, March 2009

  • Park, J. B.; Graciani, J.; Evans, J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 13
  • DOI: 10.1073/pnas.0812604106

Influence of Au Particle Size on Au/TiO 2 Catalysts for CO Oxidation
journal, August 2014

  • Du, Mingming; Sun, Daohua; Yang, Hongwei
  • The Journal of Physical Chemistry C, Vol. 118, Issue 33
  • DOI: 10.1021/jp504681f

Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties
journal, January 1997


Surface studies of supported model catalysts
journal, January 1998


Electron Transfer at Oxide Surfaces. The MgO Paradigm: from Defects to Ultrathin Films
journal, November 2012

  • Pacchioni, Gianfranco; Freund, Hajo
  • Chemical Reviews, Vol. 113, Issue 6
  • DOI: 10.1021/cr3002017

Density functional study of water-gas shift reaction on M3O3x/Cu(111)
journal, January 2012

  • Vidal, Alba B.; Liu, Ping
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 48
  • DOI: 10.1039/c2cp42091k

Unraveling the Nature of the Oxide–Metal Interaction in Ceria-Based Noble Metal Inverse Catalysts
journal, November 2014

  • Graciani, Jesús; Vidal, Alba B.; Rodriguez, José A.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp509947t

XPS and FTIR Surface Characterization of TiO 2 Particles Used in Polymer Encapsulation
journal, May 2001

  • Erdem, Bedri; Hunsicker, Robert A.; Simmons, Gary W.
  • Langmuir, Vol. 17, Issue 9
  • DOI: 10.1021/la0015213

Chemical reactions on rutile TiO2(110)
journal, January 2008

  • Lun Pang, Chi; Lindsay, Robert; Thornton, Geoff
  • Chemical Society Reviews, Vol. 37, Issue 10
  • DOI: 10.1039/b719085a

CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction
journal, January 2001

  • Schubert, Markus M.; Hackenberg, Stefan; van Veen, Andre C.
  • Journal of Catalysis, Vol. 197, Issue 1
  • DOI: 10.1006/jcat.2000.3069

New insight of the Mars-van Krevelen mechanism of the CO oxidation by gold catalyst on the ZnO(101) surface
journal, January 2017


In Situ Photoemission Observation of Catalytic CO Oxidation Reaction on Pd(110) under Near-Ambient Pressure Conditions: Evidence for the Langmuir–Hinshelwood Mechanism
journal, September 2013

  • Toyoshima, Ryo; Yoshida, Masaaki; Monya, Yuji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 40
  • DOI: 10.1021/jp4054132

When Gold Is Not Noble: Catalysis by Nanoparticles
journal, April 2003


Interaction of carbon monoxide and oxygen at the surface of inverse titania/Au model catalyst
journal, July 2007


The critical role of water at the gold-titania interface in catalytic CO oxidation
journal, September 2014


The Effect of Adsorbed Water in CO Oxidation on Au/TiO 2 (110)
journal, December 2010

  • Yan, Ting; Gong, Jinlong; Flaherty, David W.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 5
  • DOI: 10.1021/jp109295u

Works referencing / citing this record:

Morphology and reactivity of size-selected titanium oxide nanoclusters on Au(111)
journal, February 2020

  • Goodman, Kenneth R.; Wang, Jason; Ma, Yilin
  • The Journal of Chemical Physics, Vol. 152, Issue 5
  • DOI: 10.1063/1.5134453

Growth and structural studies of In/Au(111) alloys and InO x /Au(111) inverse oxide/metal model catalysts
journal, February 2020

  • Kang, Jindong; Mahapatra, Mausumi; Rui, Ning
  • The Journal of Chemical Physics, Vol. 152, Issue 5
  • DOI: 10.1063/1.5139237

CO Oxidation at 20 °C on Au Catalysts Supported on Mesoporous Silica: Effects of Support Structural Properties and Modifiers
journal, June 2018

  • Moreno-Martell, Abigail; Pawelec, Barbara; Nava, Rufino
  • Materials, Vol. 11, Issue 6
  • DOI: 10.3390/ma11060948

MOF-derived CeO 2 /Au@SiO 2 hollow nanotubes and their catalytic activity toward 4-nitrophenol reduction
journal, January 2019

  • Zhang, Zewu; Shi, Haojun; Wu, Qiong
  • New Journal of Chemistry, Vol. 43, Issue 11
  • DOI: 10.1039/c8nj05745a